Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:43:53.409Z Has data issue: false hasContentIssue false

Imaging Transport Current Distribution in High Temperature Superconductors Using Room Temperature Scanning Laser Microscope

Published online by Cambridge University Press:  18 March 2011

C. Kwon
Affiliation:
Department of Physics and Astronomy, California State University–Long Beach, Long Beach, CA 90840, USA
B. E. Klein
Affiliation:
Department of Physics and Astronomy, California State University–Long Beach, Long Beach, CA 90840, USA
S. Seo
Affiliation:
Department of Physics and Astronomy, California State University–Long Beach, Long Beach, CA 90840, USA
B. H. Park
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Q. X. Jia
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Get access

Abstract

We report the feasibility of room temperature scanning laser microscopy (RTSLM) for the study of high temperature superconducing films. RTSLM images from SmBa2Cu3O7 and how that the ac–voltage response exists only in the section of the bridge where the transport current produces a voltage drop. A photolithographically defined 60 μm × 60 μm void in a 300 μm–wide bridge was clearly visible in a RTSLM image giving the spatial resolution smaller than 60 μm. In addition, the void disturbs the transport current distribution beyond itself generating an elongated shape void of 64 μm × 85 μm with the longer side along the direction of current flow in the RTSLM image. Our results indicate that the RTSLM is a useful tool to investigate the transport current distribution in high temperature superconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Feldmann, D. M., Reeves, J. L., Polyanskii, A. A., Goyal, A., Feenstra, R., Lee, D. F., Paranthaman, M., Kroeger, D. M., Christen, D. K., Babcock, S. E., and Larbalestier, D. C., to be published in IEEE Trans. Appl. Supercond.Google Scholar
2. Feldmann, D. M., Reeves, J. L., Polyanskii, A. A., Kozlowski, G., Biggers, R. R., Nekkanti, R. M., Maartense, I., Tomsic, M., Barnes, P., Oberly, C. E., Peterson, T. L., Babcock, S. E., and Larbalestier, D. C., Appl. Phys. Lett. 77, 2906 (2000).Google Scholar
3. Karapetrov, G., Cambel, V., Kwok, W. K., Nikolova, R., Crabtree, G. W., Zheng, H., and Veal, B. W., J. Appl. Phys. 86, 6282 (1999).Google Scholar
4. Levi, Y., Millo, O., Rizzon, N. D., Prober, D. E., and Motowidlo, L. R., Appl. Phys. Lett. 72, 480 (1998).Google Scholar
5. Gross, R. and Koelle, D., Rep. Prog. Phys. 57, 651 (1994) and references therein.Google Scholar
6. Chi, C. C., Loy, M. M. T., and Cronemeyer, D. C., Appl. Phys. Lett. 40, 437 (1982).Google Scholar
7. Dieckmann, N., Friemel, S., Bock, A., Merkt, U., Gerber, R., and Huebener, R. P., Physica C 292, 133 (1997).Google Scholar
8. Sivakov, A. G., Lukashenko, A. V., Abraimov, D., Muller, P., Ustinov, A. V., and Leghissa, M., Appl. Phys. Lett. 76, 2597 (2000).Google Scholar