Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:51:22.399Z Has data issue: false hasContentIssue false

III-Nitride Photonic Crystals for Blue and UV Emitters

Published online by Cambridge University Press:  01 February 2011

J. Shakya
Affiliation:
Department of Physics, Kansas State University, Manhattan, Kansas 66506–2601, USA
K. H. Kim
Affiliation:
Department of Physics, Kansas State University, Manhattan, Kansas 66506–2601, USA
J. Li
Affiliation:
Department of Physics, Kansas State University, Manhattan, Kansas 66506–2601, USA
J. Y. Lin
Affiliation:
Department of Physics, Kansas State University, Manhattan, Kansas 66506–2601, USA
H. X. Jiang
Affiliation:
Department of Physics, Kansas State University, Manhattan, Kansas 66506–2601, USA
T. N. Oder
Affiliation:
Department of Physics and Astronomy, Youngstown State University, Youngstown, Ohio 44555, USA
Get access

Abstract

We report the nanofabrication and characterization of triangular lattice array of photonic crystals (PCs) with diameter/periodicity as small as 100/180 nm on III-nitride Light Emitting Diodes (LEDs) using electron beam lithography and inductively-coupled-plasma dry etching. Under optical pumping, a maximum enhancement factor of 20 was obtained from the PCs for emission light intensity at the wavelength of 475 nm at room temperature. Under current injection, the total power at 20 mA of 300 × 300 μm2 unpackaged LED chips revealed an increase by 63% and 95% for 460 nm blue and 340 nm UV LEDs, respectively, as a result of the PC formation. Our results show that the fabrication of PCs enhances the power output significantly on the III-nitride LEDs, which currently have very low external quantum efficiency especially in the UV range.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Boroditsky, M. and Yablonovitch, E., Proc. SPIE. 3002, 119 (1997).Google Scholar
2. Carr, W. N. and Pittman, G. E., Appl. Phys. Lett. 3, 173 (1963).Google Scholar
3. Schnitzer, I., Yablonovitch, E., Caneau, C., and Gmitter, T. J., Appl. Phys. Lett. 62, 131 (1993).Google Scholar
4. Schnitzer, I., Yablonovitch, E., Caneau, C., and Gmitter, T. J. and Scherer, A., Appl. Phys. Lett. 63, 2174 (1993).Google Scholar
5. Jin, S. X., Li, J., Lin, J. Y. and Jiang, H. X., Appl. Phys. Lett. 77, 3236 (2000).Google Scholar
6. Ryu, H. Y., Hwang, J. K., Lee, Y. J. and Lee, Y. H., IEEE J. on Selected Topics in Quantum Electronics 8, 321 (2002).Google Scholar
7. Boroditsky, M., Krauss, T. F., Coccioli, R., Vrijen, R., Bhat, R. and Yablonovitch, E., Appl. Phys. Lett. 75, 1036 (1999).Google Scholar
8. Oder, T. N., Shakya, J., Lin, J. Y. and Jiang, H. X., Appl. Phys. Lett. 83, 1231 (2003).Google Scholar
9. Kim, K. H., Fan, Z. Y., Nakarmi, M. L., Khizar, M., Jin, S. X., Lin, J. Y., and Jiang, H. X., unpublished.Google Scholar
10. Yablonovitch, E., J. Opt. Soc. Am. B 10, 283 (1993).Google Scholar
11. Joannopoulos, J. D., Meade, R. D., and Winn, J. N., Photonic Crystals, Molding the Flow of Light, (Princeton University Press, Princeton, 1995).Google Scholar
12. Erchak, A. A., Ripin, D. J., Fan, S. H., Rakich, P., Joannoupoulos, J. D., Ippen, E. P., Petrich, G. S. and Kolodziejski, L. A., Appl. Phys. Lett. 78, 563 (2001).Google Scholar
13. Lee, Y. J., Kim, S. H., Huh, J., Kim, G. H., Lee, Y. H., Cho, S. H., Kim, Y. C. and Do, Y. R., Appl. Phys. Lett. 82, 3779 (2003).Google Scholar