Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T18:43:11.311Z Has data issue: false hasContentIssue false

Hydrogen Local Vibrational Modes in Compound Semiconductors

Published online by Cambridge University Press:  10 February 2011

M. D. Mccluskey*
Affiliation:
University of California and Lawrence Berkeley National Laboratory, MS 2–200, 1 Cyclotron Rd., Berkeley, CA 94720
Get access

Abstract

Local vibrational mode (LVM) spectroscopy of hydrogen and deuterium in GaP, AlSb, ZnSe, and GaN has provided important information about the structures of dopanthydrogen complexes and their interaction with the host lattice. In GaN:Mg, for example, hydrogen binds to a host nitrogen which is adjacent to the magnesium acceptor. In GaP and ZnSe, it has been demonstrated that the temperature dependent shifts of LVM's are proportional to the lattice thermal energy, a consequence of the anharmonic coupling of the local mode to acoustical phonons.

Large hydrostatic pressures have been applied to semiconductors to probe the vibrational properties of hydrogen-related complexes. In GaAs, the pressure dependent shifts of the 12C-H and 13C-H stretch modes have positive curvatures, while the shift of the S-H stretch mode has a negative curvature. This may be related to the fact that in the bond-centered C-H complex, the hydrogen is compressed between the carbon acceptor and one gallium host atom, whereas in the S-H complex, the hydrogen occupies an interstitial position and is not crowded by neighboring atoms. If these trends are general, then hydrostatic pressure may be a powerful tool in determining the position of the hydrogen atom(s) in a complex.

In AISb. pressure was utilized to resolve a mystery as to why the Se-D complex gives rise to one stretch mode peak while the Se-H stretch mode splits into three peaks. This anomalous splitting is explained in terms of a new resonant interaction between the stretch mode and combination modes involving a wag mode harmonic and extended lattice phonons. The interaction gives rise to vibrational modes with both localized and extended components. When the temperature or hydrostatic pressure is varied, the modes exhibit anti-crossing behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Johnson, I. N. M., Bumham, R. D., Street, R. A., and Thornton, R. L., Phys. Rev. B 33, 1102 (1985).Google Scholar
2. Chevallier, J., Clerjaud, B., and Pajot, B., in Semiconductors and Semimetals, Vol.34, edited by J. I. Pankove and N. M. Johnson, Ch. 13 (1991).Google Scholar
3. Newman, R. C., Adv. Phys. 18, 545 (1969).Google Scholar
4. Hailer, E. E., in Defect and Impurity Engineered Semiconductors and Devices, edited by Ashok, S. et al. (Pittsburgh, PA, 1995), Materials Research Proc. Vol.378, 547.Google Scholar
5. Hailer, E. E., in Handbook on Semiconductors, edited by S. Mahajan (North-Holland, Amsterdam), Vol.3b, Ch. 20.Google Scholar
6. Jones, R., Goss, J., Ewels, C., and Oberg, S., Phys. Rev. B 50, 8378 (1994).Google Scholar
7. Davidson, B. R., Newman, R. C., Bullough, T. J., and Joyce, T. B., Phys. Rev. B 48, 17106 (1993).Google Scholar
8. Ying, Cheng, Stavola, M., Abernathy, C. R., Pearton, S. J., and Hobson, W. S., Phys. Rev. B 49, 2469 (1994).Google Scholar
9. Davidson, B. R., Newman, R. C., Kaneko, T., and Naji, O., Phys. Rev. B 50, 12250 (1994).Google Scholar
10. Pritchard, R. E., Davidson, B. R., Newman, R. C., Bullough, T. J., Joyce, T. B., Jones, R., and Öberg, S., Semicond. Sci. Technol. 9, 140 (1994).Google Scholar
11. Clerjaud, B., Cô.te, D., Hahn, W.-S., and Ulrici, W., Appl. Phys. Lett. 58, 1860 (1991).Google Scholar
12. Rahbi, R., Theys, B., Jones, R., Pajot, B., Öberg, S., Somogyi, K., Fille, M.L., and Chevallier, J., Solid St. Commun. 91, 187 (1994).Google Scholar
13. Vetterhöffer, J., Svensson, J. H., Weber, J., Leitch, A. W. R., and Botha, J. R., Phys. Rev. B 50, 2708 (1994).Google Scholar
14. Pajot, B. and Song, C., Phys. Rev. B 45. 6484 (1992).Google Scholar
15. Vetterhöffer, J., Wagner, J., and Weber, J., Phys. Rev. Lett. 77, 5409 (1996b).Google Scholar
16. Darwich, R.. Pajot, B., Rose, B., Robein, D., Theys, B., Rahbi, R., Porte, C., and Gendron, F., Phys. Rev. B 48, 17776 (1993).Google Scholar
17. McCluskey, M. D., Hailer, E. E., Walker, J., and Johnson, N. M., Phys. Rev. B 52, 11859(1995).Google Scholar
18. Merill, L. and Bassett, W.A., Rev. Sci. Instr. 45, 290 (1974).Google Scholar
19. Sterer, E., Pasternak, M. P., and Taylor, R. D., Rev. Sci. Instr. 61, 1117 (1990).Google Scholar
20. Schiferl, D., Cromer, D. T., and Mills, R. L., High Temp. High Pressures 10, 493 (1978).Google Scholar
21. McCluskey, M. D., Hsu, L., Wang, L., and Haller, E. E., Phys. Rev. B 54, 8962 (1996).Google Scholar
22. Park, R. M., Troffer, M. B., Rouleau, C. M., DePuydt, J. D., and Haase, M. A., Appl. Phys. Lett. 57, 2127 (1990).Google Scholar
23. Ohkawa, K., Karasawa, T., and Mitsuyu, T., Jpn. J. Appl. Phys. 30, L152 (1992).Google Scholar
24. Wolk, J. A., Ager, J. W. III, Duxstad, K. J., Haller, E. E., Taskar, N. R., Dorman, D. R., and Olego, D. J., Appl. Phys. Lett. 63, 2756 (1993).Google Scholar
25. Kamata, A., Mitsuhashi, H., and Fujita, H., Appl. Phys. Lett. 63, 3353 (1993).Google Scholar
26. Ming Li, M., Strachan, D. J., Ritter, T. M., Tamargo, M., and Weinstein, B. A., Phys. Rev.B 50, 4385 (1994).Google Scholar
27. Bourret-Courchesne, E. D., Appl. Phys. Lett. 68, 2481 (1996).Google Scholar
28. McCluskey, M. D., Hailer, E. E., Zach, F. X., and Bourret-Courchesne, E. D., Appl. Phys. Lett. 68, 3476 (1996).Google Scholar
29. Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 39.Google Scholar
30. Elliot, R.J., Hayes, W., Jones, G. D., MacDonald, H. F., and Sennet, C. T., Proc. R. Soc. Lond. A289, 1 (1965).Google Scholar
31. Irwin, J. C. and LaCombe, L., Journ. Appl. Phys. 45, 567 (1974).Google Scholar
32. Bouanani-Rahbi, R., Pajot, B., Ewels, C. P., Öberg, S., Goss, J., Jones, R., Nissim, Y., Theys, B., and Blaauw, C., in Shallow-Level Centers in Semiconductors, edited by Ammerlaan, C. A. J. and Pajot, B. (World Scientific, 1997), p. 171.Google Scholar
33. Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L797 (1995).Google Scholar
34. Nakamura, S., Senoh, M., Nagahama, S., lwasa, N., Yamada, T., Matsushita, T., Kiyoko, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
35. See, e.g., Ponce, F. A. and Bour, D. P., Nature 386, 351 (1997).Google Scholar
36. Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
37. Nakamura, S., Mukai, T., Senoh, M., and lwasa, N., Jpn. J. Appl. Phys. 31, L139 (1992).Google Scholar
38. Götz, W., Johnson, N. M., Walker, J., Bour, D. P., McCluskey, M. D., and Hailer, E. E., Appl. Phys. Lett. 69, 3725 (1996).Google Scholar
39. Moustakas, T. D. and Molnar, R., Mater. Res. Soc. Symp. Proc. 281, 753 (1993).Google Scholar
40. Neugebauer, J. and Van de Walle, C. G., Appl. Phys. Lett. 68, 1829 (1996).Google Scholar
41. Jayaraman, A., Rev. Modem Phys. 55, 65 (1983).Google Scholar
42. Hsu, L., Zehender, S., Bauser, E., and Hailer, E. E., Phys. Rev. B 55, 10515 (1997).Google Scholar
43. Wolk, J. A., Kruger, M. B., Heyman, J. N., Walukiewicz, W., Jeanloz, R., and Haller, E. E., Phys. Rev. Lett. 66, 774 (1991).Google Scholar
44. McCluskey, M. D., Hailer, E. E., Walker, J., Johnson, N. M., Vetterhöffer, J., Weber, J. Joyce, T. B., and Newman, R. C., Phys. Rev. B 56, 6404 (1997).Google Scholar
45. McCluskey, M. D., Haller, E. E., Walukiewicz, W., and Becla, P., Phys. Rev. B 53, 16297 (1996).Google Scholar
46. McCluskey, M. D., Haller, E. E., Walukiewicz, W., and Becla, P., accepted for publication in Solid State Commun.Google Scholar
47. Giannozzi, P., de Gironcoli, S., Pavone, P., and Baroni, S., Phys. Rev. B 43, 7231 (1991).Google Scholar
48. Ves, S., Strössner, K., and Cardona, M., Solid State Commun. 57, 483 (1986).Google Scholar