Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:37:02.849Z Has data issue: false hasContentIssue false

Hydrogen Ion Beam Passivation of Electrically Active Defects in Crystalline Silicon Solar Cells

Published online by Cambridge University Press:  25 February 2011

Y.S. Tsuo
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
J.B. Milstein
Affiliation:
Energy Materials Corporation, So. Lancaster, MA 01561
R.J. Matson
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
Get access

Abstract

We have observed significant improvements in the efficiencies of dendritic web and edge-supported-pulling silicon sheet solar cells after hydrogen ion beam passivation for a period of ten minutes or less. We have obtained electron-beam-induced current data that show the hydrogen passivation of dislocations as well as grain boundaries in edge-supportedpulling silicon sheet solar cells. We have studied the effects of the hydrogen ion beam treatment with respect to silicon material damage, silicon sputter rate, introduction of impurities, and changes in reflectance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Benton, J.L., Doherty, C.J., Ferris, S.D., Flamm, D.L., Kimerling, L.C., and Leamy, H.J., Appl. Phys. Lett. 36, 670 (1980).Google Scholar
2. Seager, C.H. and Ginley, D.S., J. Appl. Phys. 52, 1050 (1981).Google Scholar
3. Schmidt, W., Rasch, K.D., and Roy, K., Proceedings of 16th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1982), p. 537.Google Scholar
4. Pankove, J.I., Carlson, D.E., Berkeyheiser, J.E., and Wance, R.O.. Phys. Rev. Lett. 51, 2224 (1983).Google Scholar
5. Hanoka, J.I., Seager, C.H., Sharp, D.J., and Panitz, J.K.G., Appl. Phys. Lett. 42, 618 (1983).Google Scholar
6. Singh, R., Fonash, S.J., Rohatgi, A., and Choudhury, P. Rai, Proceedings of 5th European Communities Photovoltaic Solar Energy Conference (D. Reidel, Dordrecht, 1984), p. 1064.Google Scholar
7. Tsuo, Y.S. and Milstein, J.B., Appl. Phys. Lett. 45, 971 (1984).Google Scholar
8. Dube, C. and Hanoka, J.I., Appl. Phys. Lett. 45, 1135 (1984).Google Scholar
9. Pankove, J.I., Wance, R.O., and Berkeyheiser, J.E., Appl. Phys. Lett. 45, 1100 (1984).Google Scholar
10. Micheels, R. H., Vayman, Z., and Hanoka, J.I., Appl. Phys. Lett. 46, 414 (1985).Google Scholar
11. Tsuo, Y.S. and Milstein, J.B., J. Appl. Phys. to be published in the 6/15/85 issue.Google Scholar
12. Ginley, D.S. and Haaland, D.M., Appl. Phys. Lett. 39, 271 (1981).Google Scholar
13. Panitz, J.K.G., Sharp, D.J., and Seager, C.H., Thin Solid Films 111, 277 (1984).Google Scholar
14. Hurd, J.L. and Ciszek, T.F., J. Crystal. Growth 59, 499 (1982).Google Scholar
15. Tsuo, Y.S., Hurd, J.L., Matson, R.J., and Ciszek, T.F., IEEE Trans. Electron Dev. Ed–31, 614 (1984).Google Scholar
16. Seidensticker, R.G., J. Cryst. Growth 39, 17 (1977).Google Scholar
17. Matson, R.J. and Tsuo, Y.S., pp 9396, Microbeam Analysis, Romig and Goldstein, Eds. (San Francisco Press, San Francisco, CA; 1984).Google Scholar
18. Meier, D.L., Rohatgi, A., Campbell, R.B., Alexander, P., Fonash, S.J., and Singh, R., Proceedings of 17th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1984), p. 427.Google Scholar
19. Milstein, J.B., Tsuo, Y.S., Osterwald, C.R., and White, C.W., Proceedings of 17th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1984), p. 1127.Google Scholar