Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T04:40:33.407Z Has data issue: false hasContentIssue false

Hydrogen in III–V Semiconductors

Published online by Cambridge University Press:  26 February 2011

W. C. Dautremont–Smith*
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

The reversible introduction of atomic hydrogen into III–V semiconductors reduces the active concentrations of shallow donor and acceptor levels, as well as a variety of deep levels. Dissociation of the hydrogen-containing complexes by thermal annealing can restore the original active concentrations, and aid in the characterization of the complexes involved. Hydrogen is in-diffused at temperatures typically in the 150 to 300°C range, most simply from an H2 plasma.

In GaAs, the III–V compound which has been subjected to the most hydrogenation studies, carrier concentrations are reduced (by up to many orders of magnitude) in both n- and p-type material. Hydrogen diffusion depths are dependent on dopant concentration, but for similar doping levels, diffusion is always deeper into p-type GaAs. In addition, the type of plasma exposure strongly influences the depth of H diffusion, with low frequency, direct exposure producing the greatest penetration depth. A variety of deep level defects in bulk material (including EL2) and in MBE-grown layers can be passivated, and partial passivation of interface-related defects in GaAs-on-Si has been demonstrated. Reactivation kinetics are dependent on the nature of the dopant or defect, with the passivation of p-GaAs being less stable than that of n-GaAs. Recent infra-red absorption studies have confirmed the formation of a donor-hydrogen complex in n-GaAs, in contrast to an As-H complex in p-GaAs. In GaAIAs, acceptors, donors, and the DX center have been passivated. In some cases, the defect passivation has greater thermal stability than that of the shallow levels, a property of potential benefit. Recently demonstrated applications of hydrogenation include an MBE GaAs MESFET with a hydrogenated channel, and a GaAs/GaAIAs double heterostructure laser with current guiding provided by resistive hydrogenated regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Pearton, S. J., Corbett, J. W. and Shi, T. S., Appl. Phys. A 43, 153 (1987).Google Scholar
[2]Corbett, J. W., these proceedings.Google Scholar
[3]Boening, H. V., in Plasma Science and Technology (Cornell Univ. Press, Ithaca, N.Y.; 1983), chapter 13, p. 36.Google Scholar
[4]Bruce, R. H., J. Appl. Phys. 52, 7064 (1981).Google Scholar
[5]Dautremont-Smith, W. C., Pearton, S. J. and Lopata, J., unpublished work.Google Scholar
[6]Chevallier, J., Dautremont-Smith, W. C., Tu, C. W. and Pearton, S. J., Appl. Phys. Lett. 47, 108 (1985).Google Scholar
[7]Chung, Y., Langer, D. W., Becker, R. and Look, D., IEEE Trans. Electron Devices ED–32, 40 (1985).Google Scholar
[8]Pearton, S. J., Dautremont-Smith, W. C., Chevallier, J., Tu, C. W. and Cummings, K. D., J. Appl. Phys. 59, 2821 (1986).Google Scholar
[9]Jalil, A., Chevallier, J., Azoulay, R. and Mircea, A., J. Appl. Phys. 59, 3774 (1986).Google Scholar
[10]Pan, N., Lee, B., Bose, S. S., Kim, M. H., Hughes, J. S., Stillman, G. E., Arai, K. and Nashimoto, Y., Appl. Phys. Lett. 50, 1832 (1987).Google Scholar
[11]Pearton, S. J., Dautremont-Smith, W. C., Lopata, J., Tu, C. W. and Abernathy, C. R., Phys. Rev. B36, 4260 (1987).Google Scholar
[12]Chevallier, J., Dautremont-Smith, W. C., Pearton, S. J., Tu, C. W. and Jalil, A., Proc. 3rd Int. Symp. Dry Etching and Plasma Dep. in Microelectronics, Cachan, France, Nov. 1985, p. 161 (in Le Vide).Google Scholar
[13]Johnson, N. M., Burnham, R. D., Street, R. A. and Thornton, R. L., Phys. Rev. B33, 1102 (1986).Google Scholar
[14]Omel'yanovskii, E. M., Pakhomov, A. V. and Polyakov, A.Ya., Soy. Phys. Semicond. 21, 514 (1987).Google Scholar
[15]Pajot, B., Newman, R. C., Murray, R., Jalil, A., Chevallier, J. and Azoulay, R., Phys. Rev. B (to be published).Google Scholar
[16]Jalil, A., Chevallier, J., Pesant, J. C., Mostefaoui, R., Pajot, B., Murawala, P. and Azoulay, R., Appl. Phys. Lett. 50, 439 ( 1987).Google Scholar
[17]Nabity, J. C., Stavola, M., Lopata, J., Dautremont-Smith, W. C., Tu, C. W. and Pearton, S. J., Appl. Phys. Lett. 50, 921 (1987).Google Scholar
[18]Jackson, G. S., Pan, N., Feng, M. S., Stillman, G. E., Holonyak, N. Jr, and Burnham, R. D., Appl. Phys. Lett. 51, 1629 (1987).Google Scholar
[19]Pearton, S. J., Dautremont-Smith, W. C., Tu, C. W., Nabity, J. C., Swaminathan, V., Stavola, M. and Chevallier, J.: GaAs and Related Compounds 1986, ed. Lindley, W. T. (Inst. Phys. Conf. Ser. 83, Inst. Physics, Bristol, U.K., 1987) p. 289.Google Scholar
[20]Murray, R., Newman, R. C., Nandhra, P. S., Beall, R. B., Harris, J. J. and Wright, P. J., these proceedings.Google Scholar
[21]Pan, N., Bose, S. S., Kim, M. H., Stillman, G. E., Chambers, F., Devane, G., Ito, C. R. and Feng, M., Appl. Phys. Lett. 51, 596 ( 1987).Google Scholar
[22]Chevallier, J., Pajot, B., Jalil, A., Mostefaoui, R., Rahbi, R. and Boissy, M. C., these proceedings.Google Scholar
[23]Pajot, B., Jalil, A., Chevallier, J. and Azoulay, R., Semiconductor Science and Technology 2, 305 (1987).Google Scholar
[24]Chevallier, J., personal communication.Google Scholar
[25]Lagowski, J., Kaminska, M., Parsey, J. M. Jr, Gatos, H. C. and Lichtensteiger, M., Appl. Phys. Lett. 41, 1078 (1982).Google Scholar
[26]Pearton, S. J., Hailer, E. E. and Elliott, A. G., Electron Lett. 19, 1052 ( 1983).Google Scholar
[27]Pearton, S. J. and Tavendale, A. J., Electron Lett. 18, 715 ( 1982).Google Scholar
[28]Dautremont-Smith, W. C., Nabity, J. C., Swaminathan, V., Stavola, M., Chevallier, J., Tu, C. W. and Pearton, S. J., Appl. Phys. Lett. 49, 1098 (1986).Google Scholar
[29]Pao, Y-C., Liu, D., Lee, W. S. and Harris, J. S., Appl. Phys. Lett. 48, 1291 (1986).Google Scholar
[30]Clerjaud, B., Cóte, D. and Naud, C., Phys. Rev. Lett. 58, 1755 (1987).Google Scholar
[31]Clerjaud, B., C~te, D., Krause, M. and Naud, C., these proceedings.Google Scholar
[32]Pearton, S. J., Wu, C. S., Stavola, M., Ren, F., Lopata, J., Dautremont-Smith, W. C., Vernon, S. M. and Haven, V. E., Appl. Phys. Lett. 51, 496 (1987).Google Scholar
[33]Zavada, J. M., Wilson, R. G. and Novak, S. W., in ESSDERC'87, Proc. of the 17th European Solid State Device Research Conference, Bologna, Italy, Sept. 1987.Google Scholar
[34]Constant, E., Chevallier, J., Pesant, J. C. and Caglio, N., Electron. Lett. 23, 841 (1987).Google Scholar
[35]Dyment, J. C., North, J. C. and D'Asaro, L. A., J. Appl. Phys. 44, 207 (1973).Google Scholar
[36]Chang, R. P. H., Chang, C. C. and Darack, S., J. Vac. Sci. Technol. 20, 45 (1985).Google Scholar
[37]Niggebrügge, U., Klug, M. and Garus, G.: GaAs and Related Compounds 1985 (Inst. Phys. Conf. Ser. No. 79, Inst. Phys., Bristol, U.K., 1986), p 367.Google Scholar
[38]Cheung, R., Thomas, S., Beamont, S. P., Doughty, G., Law, V. and Wilkinson, C. D. W., Electron Lett. 23, 857 ( 1987).Google Scholar
[39]Shin, S-M., Chung, H-K., Chen, C-H. and Tan, K., J. Appl. Phys. 62, 1729 ( 1987).Google Scholar
[40]Donnelly, V. M., Flamm, D. L., Dautremont-Smith, W. C. and Werder, D. J., J. Appl. Phys. 55, 242 (1984).Google Scholar
[41]Beyea, D. M. and Lakhani, A. A., presented at the Electrochemical Society Fall Meeting, San Diego, CA, Oct. 1986.Google Scholar
[42]Shinar, J., Kana-ah, A., Cavenett, B. C., Kennedy, T. A. and Wilsey, N., Solid State Commun. 59, 653 (1986).Google Scholar