No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
Highly porous nanomaterials like aerogels, hybrid crosslinked aerogels (X-aerogels) and xerogels exhibit a broad range of tailorable properties such as the pore size, surface area, surface chemistry and mechanical strength. The versatile manufacturing route of sol-gel synthesis and various tunable properties makes aerogels and xerogels attractive candidates for biomedical applications including tissue engineering, sample collection applicators and engineered microenvironments for three-dimensional cell culture. The present study explores meso- and macroporous inorganic-organic hybrid aerogels prepared via sol-gel processing for two different applications, namely, as scaffolds for cell culture and as potential materials for sample collection applicators.