Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-20T03:21:31.091Z Has data issue: false hasContentIssue false

Hybrid Materials Approach In The Design Of Electrodes And Electrolytes For Energy Storage And Conversion

Published online by Cambridge University Press:  01 February 2011

Karina Cuentas-Gallegos
Affiliation:
Materials Science Institute of Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
Mónica Lira-Cantú
Affiliation:
Materials Science Institute of Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
Nieves Casañ-Pastor
Affiliation:
Materials Science Institute of Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
Juan A. Asensio
Affiliation:
Materials Science Institute of Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
Pedro Gómez-Romero
Affiliation:
Materials Science Institute of Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
Get access

Abstract

The integration of electro-ionically active inorganic species in polymer matrices allows for the design of either electrode or electrolyte materials depending on the conducting or insulating properties of the polymer used. Conducting polymers can be used as the basis for a variety of hybrid electrode systems, whereas other polymers such as polybenzimidazoles have been used as electrolyte membranes by themselves or in combination with inorganic solid acids. We will discuss the general approach of hybrid design with this in mind and specifically we will describe our recent results on the use of polyoxometalate-containing hybrids in energy storage and conversion devices. In this respect we have worked in our laboratory on electrochemical supercapacitors and fuel cells but emphasis should be made on the broader potential fields of application of this type of materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pope, M.T., “Heteropoly and Isopoly Oxometalates”. Springer-Verlag, Berlin. (1983).Google Scholar
2. Pope, M.T., Müller, A., (Eds). “Polyoxometalates: From Platonic Solids to Antiretroviral Activity”, Vol. 10, Kluwer Academic Publishers, Dordretch (The Netherlands). (1994)Google Scholar
3. Gómez-Romero, P., Casañ-Pastor, N., J. Phys. Chem. 100, 1244812454. (1996)Google Scholar
4. Gómez-Romero, P., Solid State Ionics, 101–3, 243–248. (1997)Google Scholar
5. Gómez-Romero, P. and Sánchez, C. (Editors) “Functional Hybrid MaterialsWiley-VCH. Weinheim (2004)Google Scholar
6. Gomez-Romero, P., “Hybrid Organic-Inorganic Materials. In Search of Synergic Activity”, Adv. Mater. 13(3), 163174. (2001),Google Scholar
7. Gómez-Romero, P., Lira-Cantú, M., Adv. Mater 9(2), 144. (1997)Google Scholar
8. Gómez-Romero*, P., Chojak, M., Cuentas-Gallegos, K., Asensio, J. A., Kulesza, P., Casañ-Pastor, N. and Lira-Cantú, M.. Electrochem. Commun., 5, 149153. (2003)Google Scholar
9. Cuentas-Gallegos, K., Lira-Cantú, M., Casañ-Pastor, N. and Gómez-Romero*, P. Adv. Functional Materials, 2005 (in press)Google Scholar
10. Wainright, J. S., Wang, J. T., Weng, D., Savinell, R. F., and Litt, M., J. Electrochem. Soc. 142, L121 (1995).Google Scholar
11. Fontanella, J. J., Wintersgill, M. C., Wainright, J. S., Savinell, R. F., and Litt, M., Electrochimica Acta 43, 1289 (1998).Google Scholar
12. Asensio, J. A., Borrós, S. and Gómez-Romero*, P., J. Electrochem. Soc. 151(2), A304A310. (2004)Google Scholar
13. Asensio, J. A., Borrós, S. and Gómez-Romero*, P., Electrochem. Commun., 5(11), 967972 (2003)Google Scholar
14. Asensio, J. A., Borrós, S., and Gómez-Romero*, P. accepted in Electrochimica Acta, (2004)Google Scholar