Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:42:21.629Z Has data issue: false hasContentIssue false

Hybrid Gels and Nanoscale Chemistry for Optical Applications

Published online by Cambridge University Press:  10 February 2011

J-P. Boilot
Affiliation:
Laboratoire de Physique de la Matiére Condenéde, CNRS UMR 7643, Ecole Polytechnique. 91128 Palaiseau Cedex, France.
J. Biteau
Affiliation:
Laboratoire de Physique de la Matiére Condenéde, CNRS UMR 7643, Ecole Polytechnique. 91128 Palaiseau Cedex, France.
A. Brun
Affiliation:
Laboratoire Charles Fabry de l'Institut d'Optique, URA CNRS 14, Bât. 503, Université d'Orsay-Paris XI, B.P. 147, 91403 Orsay Cedex, FRANCE.
F. Chaput
Affiliation:
Laboratoire de Physique de la Matiére Condenéde, CNRS UMR 7643, Ecole Polytechnique. 91128 Palaiseau Cedex, France.
T. Dantas De Morais
Affiliation:
Laboratoire de Physique de la Matiére Condenéde, CNRS UMR 7643, Ecole Polytechnique. 91128 Palaiseau Cedex, France.
B. Darracq
Affiliation:
Laboratoire Charles Fabry de l'Institut d'Optique, URA CNRS 14, Bât. 503, Université d'Orsay-Paris XI, B.P. 147, 91403 Orsay Cedex, FRANCE.
T. Gacoin
Affiliation:
Laboratoire de Physique de la Matiére Condenéde, CNRS UMR 7643, Ecole Polytechnique. 91128 Palaiseau Cedex, France.
K. Lahlil
Affiliation:
Laboratoire de Physique de la Matiére Condenéde, CNRS UMR 7643, Ecole Polytechnique. 91128 Palaiseau Cedex, France.
J-M. Lehn
Affiliation:
Collége de France, Chimie des Interactions Moléculaires, UPR CNRS 285, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France).
Y. Levy
Affiliation:
Laboratoire Charles Fabry de l'Institut d'Optique, URA CNRS 14, Bât. 503, Université d'Orsay-Paris XI, B.P. 147, 91403 Orsay Cedex, FRANCE.
L. Malier
Affiliation:
Laboratoire de Physique de la Matiére Condenéde, CNRS UMR 7643, Ecole Polytechnique. 91128 Palaiseau Cedex, France.
G-M. Tsivgoulis
Affiliation:
Collége de France, Chimie des Interactions Moléculaires, UPR CNRS 285, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France).
Get access

Abstract

A large variety of materials for optical and optoelectronic applications has been developed by trapping active organic molecules and nanocrystals into pure inorganic and hybrid organic- inorganic gels. Concerning optically active molecules, we focus only here on luminescent materials for solid state tunable lasers and light-emitting diodes, and photochromic materials for integrated optics and optical storage. Optical properties can be controlled by changing the nature and the intensity of chemical and steric interactions between the organic system and the solid host matrix. Concerning nanocrystals, we present two approaches for the synthesis of transparent solids based on 1I-VI semiconducting nanoparticles. A first category of materials consists in the dispersion of CdS nanoparticles in sol-gel silica matrices. The luminescence can be controlled by offering an alternative pathway for the recombination of surface trapped carriers. A second group of transparent materials is obtained by considering the CdS nanoparticles not only as the optically active units, but also as the building blocks for the whole solid.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Avnir, D., Braun, S. and Ottolenghi, M., Encapsulation of molecules and enzymes in Sol-Gel glasses, in: Supramolecular Architecture ACS 499, ed. Bein, T., American Chemical Society, Washington, DC 1992.Google Scholar
2 Boilot, J.P., Biteau, J., Chaput, F., Gacoin, T., Brun, A., Darracq, B., Georges, P. and LUvy, Y., Pure Appl. Opt., 7, 169 (1998).10.1088/0963-9659/7/2/007Google Scholar
3 Boilot, J.P., Chaput, F., Galaup, J.P., Veret-Lemarinier, A.M., Riehl, D. and Lévy, Y., AIChE Journal, Special Ceramics Processing Issue, 43, 11A, 2820 (1997).Google Scholar
4 a- Canva, M., Georges, P., Perelgritz, J.F., Brun, A., Chaput, F. and Boilot, J.P., Applied Optics, 34, 428 (1995). b- B. Dunn, F. Nishida, R. Toda, J. Zink, T. Allik, S. Chandra and J. Hutchinson, Mat. Res. Soc. Symp. Proc. 329, 267 (1994). c- M.D. Rahn, T.A. King, C.A. Capozzi and C.A. Seddon, SPIE, 2288, 364 and 382, Sol-Gel Optics III, (1994). d- R. Reisfeld, SPIE, 2288, 563, Sol-Gel Optics III, (1994). e- M. Faloss, M. Canva, P. Georges, A. Brun, F. Chaput, J-P. Boilot, Applied Optics, 37, 27 (1997).10.1364/AO.34.000428Google Scholar
5 Helfrich, W., Schneider, W.G., Phys. Rev. Lett., 14, 229 (1965).10.1103/PhysRevLett.14.229Google Scholar
6 Tang, C.W., Slyke, S.A., Appl. Phys. Lett., 51, 913 (1987).10.1063/1.98799Google Scholar
7 (a) Wu, C.C., Sturm, J.C., Register, R.A., Appl. Phys. Lett., 39 (21), 3117 (1996); (b) J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burnst, A.B. Holmes, Nature, 347, 539 (1990); (c) C.M. Bouché, P. Berdagué, H. Facoetti, P. Robin, P. Le Barny, M. Schott, Synth. Met., 81, 191 (1996).10.1063/1.116800Google Scholar
8 Chen, C.H., Tang, C.W. in Chem. Funct. Dyes Proc. Int. Symp., editors : Yoshida, Z.. Shirota, Y., Mita Press, Tokyo, 536 (1993).Google Scholar
9 Chaput, F., Riehl, D., Boilot, J.P., Gacoin, T., Canva, M., Levy, Y., Brun, A., Better Ceramics through Chemistry VII, Mat. Res. Soc. Symp. Proc., 435, 583 (1996).10.1557/PROC-435-583Google Scholar
10 Irie, M. and Mohri, M., J. Org. Chem., 53, 803 (1988). S. Nakamura and M. Irie, J. Org. Chem., 53, 6136 (1988).10.1021/jo00239a022Google Scholar
11 Biteau, J., Chaput, F., Lahlil, K., Boilot, J.P., Tsivgoulis, G.M., Lehn, J.M., Darracq, B.. Marois, C., Lévy, Y., Chem. Mater (submitted).Google Scholar
12 Dumont, M., Lévy, Y. and Morichère, D., in “Organic Molecules for NonLinear Optics and Photonics’, ed. Messier, J., Kluwer Academic Publishers, (1991), 461.10.1007/978-94-011-3370-8_33Google Scholar
13 Kretschmann, E. and Raether, H., Z. Naturf. 23a, 2135 (1968).Google Scholar
14 Tanio, N. and Irie, M., Jpn. J. Appl. Phys., 33, 1550 (1994).10.1143/JJAP.33.1550Google Scholar
15 Todorov, T., Nikolova, L., and Tomova, N., Appl. Opt., 23, 4309 (1984).10.1364/AO.23.004309Google Scholar
16 Dumont, M., Froc, G., and Hosotte, S., Nonlinear Optics, 9, 327 (1995).Google Scholar
17 Riehl, D., Chaput, F., Roustamanian, A., Lévy, Y., and Boilot, J.P., Nonlinear Optics, 8, 2651 (1994).Google Scholar
18 Rochon, P., Batalla, E., and Natansohn, A., Appl. Phys. Lett., 66, 136 (1995).10.1063/1.113541Google Scholar
19 Kim, D.Y., Li, L., Jiang, X.L., Shivshankar, V., Kumar, J., and Tripathy, S.K., Macromolecules, 28, 8835 (1995).10.1021/ma00130a017Google Scholar
20 Loewen, E. G. and Popov, E., Optical Engineering n°58 (1996) ed. Dekker, Marcel.Google Scholar
21 Chaput, F., Riehl, D., Lévy, Y. and Boilot, J.P., Chem. Mater. 5, 589 (1993).10.1021/cm00029a001Google Scholar
22 Kim, D.Y., Lee, T.S., Wang, X., Jiang, X.L., Li, L., Kumar, J., and Tripathy, S.K., SPIE 2998, 195 (1997).Google Scholar
23 Barret, C. J., Natansohn, A., and Rochon, P., J. Phys. Chem., 100, 8836 (1996).10.1021/jp953300pGoogle Scholar
24 Gacoin, T., Train, C., Chaput, F., Boilot, J.P., Aubert, P., Gandais, M., Wang, Y., Lecomte, A. SPIE Proc. 1758, 565 (1992).10.1117/12.132049Google Scholar
25 Gacoin, T., Malier, L., Counio, G., Esnouf, S., Boilot, J.P., Audinet, L., Ricolleau, C., Gandais, M., Mat. Res. Soc. Proc. 435, 643 (1996).10.1557/PROC-435-643Google Scholar
26 Herron, N., Wang, Y., Eckert, H., J. Am. Chem. Soc. 112, 1322 (1990). Y. Nosaka, N. Otha, T. Fukuyama, N. Fujii, J. Colloid Interface Sci. 155, 23 (1993).10.1021/ja00160a004Google Scholar
27 Fojtik, A., Weller, H., Koch, U., Henglein, A., Ber. Bunsen-Ges. Phys. Chem 88, 969 (1984).10.1002/bbpc.19840881010Google Scholar
28 Murray, C.B., Norris, D.J., Bawendi, M.G., J. Am. Chem. Soc. 115, 8706 (1993).10.1021/ja00072a025Google Scholar
29 Lianos, P., Thomas, J.K., Chem. Phys. Lett. 125, 299 (1986).10.1016/0009-2614(86)87069-5Google Scholar
30 Steigerwald, M.L., Allivisatos, A.P., Gibson, J.M., Harris, T.D., Kortan, R., Muller, A.J., Thayer, A.M., Duncan, T.M., Douglass, D.C., Brus, L.E., J. Am. Chem. Soc. 110, 3046 (1988).10.1021/ja00218a008Google Scholar
31 Gacoin, i.T., Malier, L., Boilot, J.P., J. Mat. Chem., 7, 6 (1997) 859.10.1039/a701035dGoogle Scholar
32 Gacoin, T., Malier, L., Boilot, J.P., Chem. Mat., 9, 1502 (1997).10.1021/cm970103pGoogle Scholar
33 Counio, G., Esnouf, S., Gacoin, T., Boilot, J.P., J. Chem. Phys., 100, 20021 (1996).10.1021/jp961937iGoogle Scholar
34 Counio, G., Gacoin, T., Boilot, J.P., Quantum Confinement IV: Nanoscale Materials, Devices and Systems – Electrochemical Society Proceedings Volume 97-11, 35 (1997).Google Scholar
35 Biteau, J., Peretti, J., Chaput, F., Safarov, V., Boilot, J.P., Lehn, J.M., to be published.Google Scholar