Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:29:16.269Z Has data issue: false hasContentIssue false

High Resolution Electron Microscopy of Interfaces in Topotaxial and Epitaxial Reactions

Published online by Cambridge University Press:  21 February 2011

U. Dahmen
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720.
J. Douin
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720.
C.J.D. Hetherington
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720.
K.H. Westmacott
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720.
Get access

Abstract

In the study of interfaces HREM is most useful when the interface is viewed edge-on while both crystals are accurately aligned along low index zone axes. The formation of such interfaces by epitaxy or topotaxy is the natural means of obtaining structures that can be usefully analyzed by HREM. Furthermore, there is intense interest in understanding the atomic structure of such interfaces in a variety of technologically important materials. This contribution addresses such structures produced by thermal decomposition, precipitation reactions and ionized-clusterbeam deposition, and reports on the structural investigation of symmetrical and asymmetrical grain boundaries, precipitate/matrix interfaces, internal defect structure of precipitates and nanocrystalline composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cahn, J.W. and Kalonji, G., Proc. Int. Conf. Solid-Solid Phase Transformations, Aaronson, H.I., Laughlin, D.E., Sekerka, R. F and Wayman, C.M., eds., The Metallurgical Society of AIME, (1982)Google Scholar
2. Fischmeister, H.P., J. de Physique, 46, Coll. C43 (1985)Google Scholar
3. Mader, W., Necker, G., Babcock, S. and Balluffi, R.W., Scr. Met. 21, 555 (1987)Google Scholar
4. Eaglesham, D.J., Kiely, C.J., Cherns, D. and Missous, M., Phil. Mag., in pressGoogle Scholar
5. Dahmen, U., Acta Met. 30, 63 (1982)Google Scholar
6. Bernal, J.D. and Mackey, A.L., Tschermaks min. u. petr. Mitt. 10,331 (1965)Google Scholar
7. Green, J., J. Mater. Sci. 18, 637 (1983)Google Scholar
8. Moodie, A.F. and Warble, C.J., J. Cryst. Growth 74, 89 (1986)Google Scholar
9. Kim, M.G., Dahmen, U. and Searcy, A. W., J. Am. Ceram. Soc. 70, 146 (1987)Google Scholar
10. Dahmen, U., Kim, M.G. and Searcy, A.W., Ultramicroscopy 23, 365 (1987)Google Scholar
11. Zangwill, A., Physics at Surfaces, Cambridge Univ. Press, N.Y. (1988)Google Scholar
12. Dahmen, U. and Westmacott, K.H., Scripta Met. 17, 1241, (1983)Google Scholar
13. Howe, J., Dahmen, U. and Gronsky, R., Phil. Mag. A 56, 31 (1987)Google Scholar
14. Saulnier, A., Mem, Sci. Rev. Metallurg. 58, 615 (1961)Google Scholar
15. Westmacott, K.H. and Dahmen, U., Proc. EMSA (1982), p. 620, Bailey, G.W., ed.Google Scholar
16. Westmacott, K.H. and Dahmen, U., Proc. Int. Conf. Phase Transf., Cambridge, (1987), in pressGoogle Scholar
17. Aaronson, H.I., in Decomposition of Austenite by Diffusional Processes, Intercience Publ., New York, 387 Google Scholar
18. LeGoues, F., Krakow, W. and Ho, P.S., Phil. Mag. A 53, 833, (1986)Google Scholar
19. Yamada, I., Inokawa, H. and Takagi, T., J. Appl. Phys. 56, 2746 (1984)Google Scholar
20. Dahmen, U. and Westmacott, K.H., Scr. Met. 22, 1678 (1988)Google Scholar
21. Madden, M.C. and Tracy, B.M., Proc. EMSA (1987), p. 362, Bailey, G.W., ed.]Google Scholar