Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-06T07:22:03.070Z Has data issue: false hasContentIssue false

Growth Temperature and Oxygen Ambient Dependency of SrTiO3/Si(100) InterfaceStructures

Published online by Cambridge University Press:  17 March 2011

Parhat Ahmet
Affiliation:
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
Takashi Koida
Affiliation:
Frontier Collaborative Research Center, Tokyo Institute of Technology, 4259 Nagatsuda, Yokohama, Kanagawa, 226-8503, Japan.
Mamoru Yoshimoto
Affiliation:
Ceramic Materials and Structure Laboratory, Tokyo Institute of Technology, 4259 Nagatsuda, Yokohama, Kanagawa, 226-8503, Japan.
Hideomi Koinuma
Affiliation:
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan Frontier Collaborative Research Center, Tokyo Institute of Technology, 4259 Nagatsuda, Yokohama, Kanagawa, 226-8503, Japan. Ceramic Materials and Structure Laboratory, Tokyo Institute of Technology, 4259 Nagatsuda, Yokohama, Kanagawa, 226-8503, Japan.
Toyohiro Chikyow
Affiliation:
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
Get access

Abstract

A systematical growth temperature and oxygen ambient dependency of SrTiO3/Si interface structures were investigated using a growth temperature gradient pulse laser deposition (PLD) system and cross sectional high resolution transmission electron microscopy (HRTEM). A SiO2 interfacial layer and an amorphized SrTiO3 layer were observed at the interface for the thin films grown on Si (100) at growth temperatures above 600°C. Our results show that at growth temperatures higher than 600°C, the formation of the amorphized SrTiO3 layer is strongly growth temperature and also oxygen partial pressure dependent.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Handbook of Thin Film Technology, edited by Maissel, Leon I. and Glang, Reinhard (McGraw-Hill, New York, 1970).Google Scholar
[2] Chaneliere, C., Autran, J. L., Devine, R. A. B., Balland, B., Mater. Sci. Eng. R Rep. 22, 269 (1998).Google Scholar
[3] Yokota, K., Yamada, T., Sasagawa, T., Nakamura, K., Miyashita, F., Thin Solid Films 343–344, 138 (1999).Google Scholar
[4] Wilk, G.D., Wallace, R.M., Appl. Phys. Lett. 76, 112 (2000).Google Scholar
[5] Cho, M.H., Whangbo, S.W., Whang, C.N., Choi, S.C., Kang, S.B., Lee, S.I., Lee, M.Y., Epitaxial Oxide Thin Films III. Symp. 345 (1997).Google Scholar
[6] Ma, T.P., IEEE Trans. Electron Devices 45, 680 (1998).Google Scholar
[7] Gusev, E.P., Copel, M., Cartier, E., Baumvol, I.J.R., Krug, C., Gribelyuk, M.A., Appl. Phys. Lett. 76, 176 (2000).Google Scholar
[8] Chin, A., Wu, Y.H., Chen, S.B., Liao, C.C., Chen, W.J., Symp. on VLSI Tech., 16 (2000).Google Scholar
[9] Mechin, L., Gerritsma, G.J., Lopez, J. Garcia, Physica C 324, 47 (1999).Google Scholar
[10] McKee, R.A., Walker, F.J., Chisholm, M.F., Phys. Rev. Lett. 81, 3014 (1998).Google Scholar
[11] Yu, Z., Ramdani, J.A., Curless, J.A., Overgaard, C.D., Finder, J.M., Droopad, R., Eisenbeiser, K.W., Hallmark, J.A., Ooms, J.W., Kaushik, V.S., J. Vac. Sci. Technol. B 18, 2139 (2000).Google Scholar
[12] Hubbard, K. J. and Schlom, D. G., J. Mater. Res. 11, 2757 (1996).Google Scholar