Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T02:47:34.890Z Has data issue: false hasContentIssue false

Growth of Crack-Free Thick AlGaN Layer and its Application to GaN-Based Laser Diode

Published online by Cambridge University Press:  03 September 2012

I. Akasaki
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan High-Tech Research center, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
S. Kamiyama
Affiliation:
High-Tech Research center, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
T. Detchprohm
Affiliation:
High-Tech Research center, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
T. Takeuchi
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
H. Amano
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan High-Tech Research center, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
Get access

Abstract

In the field of group-III nitrides, hetero-epitaxial growth has been one of the most important key technologies. A thick layer of AlGaN alloy with higher AlN molar fraction is difficult to grow on sapphire substrate, because the alloy layer is easily cracked. It is thought that one cause of generating cracks is a large lattice mismatch between an AlGaN and a GaN, when AlGaN is grown on the underlying GaN layer. We have achieved crack-free Al0.07Ga0.93N layer with the thickness of more than 1mm using underlying Al0.05Ga0.95N layer. The underlying Al0.05Ga0.95N layer was grown directly on sapphire by using the lowtemperature-deposited buffer layer (LT-buffer layer). Since a lattice mismatch between the underlying Al0.05Ga0.95N layer and upper Al0.07Ga0.93N layer is relatively small, the generation of cracks is thought to be suppressed. This technology is applied to a GaN-based laser diode structure, in which thick n-Al0.07Ga0.93N cladding layer grown on the Al0.05Ga0.95N layer, improves optical confinement and single-robe far field pattern in vertical direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Amano, H., Sawaki, N., Akasaki, I., and Toyoda, T., Appl. Phys. Lett. 48, 353 (1986).Google Scholar
2. Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
3. Nakamura, S., Iwata, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31,1258 (1992).Google Scholar
4. Akasaki, I. and Amano, H., Mater, Res. Soc. Fall Meeting Proc. 1991, Boston, 383.Google Scholar
5. Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
6. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., Kiyoku, H., Appl. Phys. Lett., 69, 4056 (1996).Google Scholar
7. Kobayashi, T., Nakamura, F., Nagahama, K., Tojyo, T., Nakajima, H., Asatsuma, T., Kawai, H., Ikeda, M., Electron. Lett. 34, 1494 (1998).Google Scholar
8. Kuramata, A., Kubota, S. I., Soejima, R., Domen, K., Horino, K., Tanahashi, T., Jpn. J. Appl. Phys. 37, L1373 (1998).Google Scholar
9. Kuramoto, M., Sasaoka, C., Hisanaga, Y., Kimura, A., Yamaguchi, A., Sunakawa, H., Kuroda, N., Nido, M., Usui, A., and Mizuta, M., Jpn. J. Appl. Phys. 38, L184 (1999).Google Scholar
10. Hofsteller, D., Bour, D.P., Thornton, R.L., and Johnson, N.M., Appl. Phys. Lett. 70, 1650 (1997).Google Scholar
11. Nakamura, S., Mat. Sci. Eng. B50, 277 (1997)Google Scholar