Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:35:24.491Z Has data issue: false hasContentIssue false

Growth and Characterization of AlN and GaN Thin Films Deposited on Si(111) Substrates Containing a Very Thin Al Layer

Published online by Cambridge University Press:  01 February 2011

Zachary J. Reitmeier
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695–7919, U.S.A.
Robert F. Davis
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695–7919, U.S.A.
Get access

Abstract

AlN films and GaN films with AlN buffer layers were deposited via metalorganic vapor phase epitaxy on Si(111) substrates previously exposed to trimethylaluminum for increasing times. Atomic force microscopy (AFM) was used to determine the influence of Al pre-flow time on the nucleation and surface morphology of the AlN and GaN films. When preceded by a 10 second Al pre-flow, AlN films feature an increased and more uniform nucleation density as compared to films deposited without Al pre-flows. Ten second Al pre-flows were also found to result in a reduction of the RMS roughness for 100 nm thick AlN films from 3.6 nm to 1.0 nm. AFM of 0.5 μm thick GaN films deposited on AlN buffers with varying pre-flow times showed reduced roughness and decreased pit density when using Al pre-flows of 10 or 20 seconds. High resolution x-ray diffraction of the GaN films showed a reduction in the average full-width halfmaximum (FWHM) of the GaN (00.2) reflection from 1076 arcsec to 914 arcsec when the AlN buffer layer was initiated with a 10 second Al pre-flow. Increasing the pre-flow time to 20 seconds and 30 seconds resulted in average (00.2) FWHM values of 925 arcsec and 928 arcsec, respectively. Similar behavior of the peak widths was observed for the (30.2) and (10.3) reflections when the pre-flow times were varied from 0 to 30 seconds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ishikawa, H., Yamamoto, K., Egawa, T., Soga, T., Jimbo, T., and Umeno, M., J. Crystal Growth 189/190, 178 (1998).Google Scholar
2. Nikishin, S. A., Faleev, N.N., Antipov, V.G., Francoeur, S., Grave de Peralta, L., Seryogin, G.A., Temkin, H., Prokofyeva, T.I., Holtz, M., and Chu, S.N.G, Appl. Phys. Lett. 75 (14), 2073 (1999).Google Scholar
3. Kobayashi, N.P., Kobayashi, J.T., Dapkus, P.D., Choi, W.J., Bond, A.E., Zhang, X., and Rich, D.H., Appl. Phys. Lett. 71 (24), 3569 (1997).Google Scholar
4. Liaw, H.W., Venugopal, R., Wan, J., Doyle, R., Fejes, P.L., and Melloch, M.R., Solid-State Electron. 44, 685 (2000).Google Scholar
5. Lahrèche, H., Vennéguès, P., Tottereau, O., Laügt, M., Lorenzini, P., Leroux, M., Beaumont, B., and Gibart, P., J. Crystal Growth 217, 13 (2000)Google Scholar
6. Zamir, S., Meyler, B., Zolotoyabko, E., and Salzman, J., J. Crystal Growth 218, 181 (2000).Google Scholar
7. Einfeldt, S., Reitmeier, Z.J., and Davis, R.F., J. Crystal Growth 253, 129 (2003).Google Scholar
8. Hashimoto, A., Aiba, Y., Motizuki, T., Ohkubo, M., and Yamamoto, A., J. Crystal Growth 175/176, 129 (1997).Google Scholar
9. Kim, M.H., Bang, Y.C., Park, N.M., Choi, C.J., Seong, T.Y., and Park, S.J., Appl. Phys. Lett. 78, 2858 (2001).Google Scholar
10. Hu, G.Q., Kong, X., Wan, L., Wang, Y.Q., Duan, X.F., Lu, Y., and Liu, X.L., J. Crystal Growth 256, 416 (2003).Google Scholar
11. Wang, X.S., Zhai, G., Yang, J., Wang, L., Hu, Y., Li, Z., Tang, J.C., Wang, X., Fung, K.K., and Cue, N., Surf. Sci. 494, 83 (2001).Google Scholar
12. Chen, P., Zhang, R., Zhao, Z.M., Xi, D.J., Shen, B., Chen, Z.Z., Zhou, Y.G., Xie, S.Y., Lu, W.F., and Zheng, Y.D., J. Crystal Growth 225, 150 (2001).Google Scholar
13. Dadgar, A., Strittmatter, A., Bläsing, J., Poschenrider, M., Contreras, O., Veit, P., Riemann, T., Bertra, F., Reiher, A., Krtschil, A., Diez, A., Hempel, T., Finger, T., Kasic, A., Schubert, M., Bimberg, D., Ponce, F.A., Christen, J., and Krost, A., Phys. Stat. Sol. C 0 (6), 1583 (2003).Google Scholar
14. Liu, R., Ponce, F.A., Dadgar, A., and Krost, A., Appl. Phys. Lett. 83 (5), 860 (2003).Google Scholar
15. Marchand, H., Zhao, L., Zhang, N., Moran, B., Coffie, R., Mishra, U.K., Speck, J.S., DenBaars, S.P. and Freitas, J.A., J. Appl. Phys. 89 (12), 7846 (2001).Google Scholar
16. Grundmann, M., Krost, A. and Bimberg, D., Appl. Phys. Lett 58, 284 (1991).Google Scholar
17. Heying, B., Tarsa, E.J., Elsass, C.R., Fini, P., DenBaars, S.P., and Speck, J.S., J. Appl. Phys. 85 (9), 6470 (1999).Google Scholar
18. Lilienthal-Weber, Z., Chen, Y., Ruvimov, S., and Washburn, J., Phys. Rev. Lett. 79, 2835 (1997).Google Scholar
19. Metzger, T., Höpler, R., Born, E., Ambacher, O., Stutzmann, M., Stömmer, R., Schuster, M., Göbel, H., Christiansen, S., Albrecht, M., and Strunk, H.P., Philos. Mag. A 77, 1013 (1998).Google Scholar
20. Follstaedt, D.M., Han, J., Provencio, P. and Fleming, J.G., MRS Internet J.Nitride Semicond. Res. 4S1, G3.72 (1999).Google Scholar
21. Srikant, V., Speck, J.S., and Clarke, D.R., J. Appl. Phys. 82 (9), 4286 (1997).Google Scholar
22. Sun, Y.J., Brandt, O., Liu, T.Y., Trampert, A., Ploog, K.H., Bläsing, J., and Krost, A., Appl. Phys. Lett. 81 (26), 4928 (2002).Google Scholar
23. Heinke, H., Kirchner, V., Einfeldt, S. and Hommel, D., Appl. Phys. Lett. 77 (14), 2145 (2000).Google Scholar