Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T17:11:12.656Z Has data issue: false hasContentIssue false

Group-III Nitride Quantum Heterostructures Emitting in the whole Visible Range

Published online by Cambridge University Press:  17 March 2011

Nicolas Grandjean
Affiliation:
CRHEA-CNRS, rue B. Grégory, Sophia Antipolis, 06560 Valbonne, France
Benjamin Damilano
Affiliation:
CRHEA-CNRS, rue B. Grégory, Sophia Antipolis, 06560 Valbonne, France
Jean Massies
Affiliation:
CRHEA-CNRS, rue B. Grégory, Sophia Antipolis, 06560 Valbonne, France
Get access

Abstract

Group-III nitride quantum wells (QWs) and quantum dots (QDs) have been grown by molecular beam epitaxy (MBE). Their optical properties are shown to be governed by the presence of a huge internal polarization field. For example, GaN/AlN QDs emit from the blue to the orange due to the giant quantum confined Stark effect (QCSE) induced by a built- in electric field of 4 MV/cm. Another consequence of the QCSE is to drastically reduces the oscillator strength of the ground state transition and thereby to increase by several orders of magnitude its radiative lifetime. Despite the very large density of dislocations in nitride layers, which induce non-radiative recombinations, carrier localization enhances the photoluminescence (PL) efficiency. This is demonstrated by GaN/AlN QDs grown on silicon substrates exhibiting strong PL intensity at room temperature. InGaN/GaN QWs with In composition of 20% also display 300 K PL peaking through the whole visible spectrum (0.4-0.66 νm). This is achieved by varying the QW thickness from 1.5 to 5.5 nm, the red-shift resulting from an internal electric field of 2.5 MV/cm. For InGaN/GaN QWs emitting at 2.8-2.9 eV, the PL efficiency at 300 K is larger than 10 %. This is ascribed to carrier localization, which is not due to InGaN phase separation that would form QDs, as revealed by transmission electron microscopy. Another origin of the carrier localization in InGaN/GaN QWs is then discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Group III nitride Semiconductor compounds, ed. Gil, B., (Clarendon Press, Oxford, 1998).Google Scholar
[2] Nakamura, S., Semicond. Sci. Technol. 14, (1999) R27 Google Scholar
[3] Narukawa, Y., Kawakami, Y., Funato, M., Fujita, Shizuo, Fujita, Shigeo, and Nakamura, S., Appl. Phys. Lett. 70, (1997) 981 Google Scholar
[4] Gérard, J.M., Cabrol, O., and Sermage, B., Appl. Phys. Lett. 68, (1996) 3123 Google Scholar
[5] Bernardini, F., Fiorentini, V. and Vanderbilt, D., Phys. Rev. B 56, (1997) R10024 Google Scholar
[6] Im, J.S., Kollmer, H., Off, J., Sohmer, A., Scholz, F. and Hangleiter, A., Phys. Rev. B 57, (1998) R9435 Google Scholar
[7] Leroux, M., Grandjean, N., Laügt, M., Massies, J., Gil, B., Lefebvre, P., and Bigenwald, P., Phys. Rev. B 58, (1998) R13371 Google Scholar
[8] Takeuchi, T., Wetzel, C., Yamaguchi, S., Sakai, H., Amano, H., Akasaki, I., Kaneko, Y., Nakagawa, S., Yamaoka, Y. and Yamada, N., Appl. Phys. Lett. 73, (1998) 1691 Google Scholar
[9] Chichibu, S.F., Abare, A.C., Minsky, M.S., Keller, S., Fleischer, S.B., Bowers, J.E., Hu, E., Mishra, U.K., Coldren, L.A., DenBaars, S.P. and Sota, T., Appl. Phys. Lett. 73, (1998) 2006 Google Scholar
[10] Grandjean, N., Damilano, B., Dalmasso, S., Leroux, M., Laügt, M. and Massies, J., J. Appl. Phys. 86, (1999) 3714 Google Scholar
[11] Grandjean, N., Massies, J., Vennéguäs, P., Leroux, M., Demangeot, F., Renucci, M., and Frandon, J., J. Appl. Phys. 83, (1998) 1379 Google Scholar
[12] Semond, F., Damilano, B., Vézian, S., Grandjean, N., Leroux, M., and Massies, J., Appl. Phys. Lett. 74, (1999) 82 Google Scholar
[13] Widmann, F., Simon, J., Daudin, B., Feuillet, G., Rouviäre, J.L., Pelekanos, N.T., and Fishman, G., Phys. Rev. B 58, (1998) R15989 Google Scholar
[14] Kahng, S.-J., Ha, Y.H., Park, J.-Y., Kim, S., Moon, D.W., and Kuk, Y., Phys. Rev. Lett. 80, (1998) 4931 Google Scholar
[15] Elsner, J., Haugk, M., Jungnickel, G., and Frauenheim, Th., Solid State Comm. 106, (1998) 739 Google Scholar
[16] Grandjean, N., Massies, J., Semond, F., Karpov, S. Yu., and Talalaev, R.A., Appl. Phys. Lett. 74, (1999) 1854 Google Scholar
[17] Damilano, B., Grandjean, N., Semond, F., Massies, J., and Leroux, M., Appl. Phys. Lett. 75, (1999) 962 Google Scholar
[18] Grandjean, N. and Massies, J., Appl. Phys. Lett. 72, (1998) 1078 Google Scholar
[19] Damilano, B., Grandjean, N., Dalmasso, S., and Massies, J., Appl. Phys. Lett. 75, (1999) 3751 Google Scholar
[20] McCluskey, M.D., Walle, C.G. Van de, Master, C.P., Romano, L.T., and Johnson, N.M., Appl. Phys. Lett. 72, (1998) 2725 Google Scholar
[21] Berkovicz, E., Guershoni, D., Bahir, G., Lakin, E., Shilo, D., Zolotoyabko, E., Abare, A.C., DenBaars, S.P., and Coldren, L.A., Phys. Rev. B 61, (2000) 10994 Google Scholar
[22] Kim, D.S., Shah, J., Cunningham, J.E., Damen, T.C., Schäfer, W., Hartmann, M., and Schmidt-Rink, S., Phys. Rev. Lett. 68, (1992) 1006 Google Scholar
[23] Damilano, B., Grandjean, N., Massies, J., Siozade, L., and Leymarie, J., Appl. Phys. Lett. 77, (2000) 1268 Google Scholar
[24] Bellaiche, L., Mattila, T., Wang, L.-W., Wie, S.-H., and , Zunger, Appl. Phys. Lett. 74, (1999) 1842 Google Scholar