Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:28:32.894Z Has data issue: false hasContentIssue false

Graphene growth on SiC and other substrates using carbon sources

Published online by Cambridge University Press:  23 March 2011

W. C. Mitchel
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Dayton, OH 45433-7707, USA
J. H. Park
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Dayton, OH 45433-7707, USA
Howard E. Smith
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Dayton, OH 45433-7707, USA
L. Grazulis
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Dayton, OH 45433-7707, USA
D. Tomich
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Dayton, OH 45433-7707, USA
K. Eyink
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Dayton, OH 45433-7707, USA
Said Elhamri
Affiliation:
Department of Physics, University of Dayton, Dayton, OH 45469, USA
Get access

Abstract

Direct deposition of graphene from carbon sources on foreign substrates without the use of metal catalysts is shown to be an effective process with several advantages over other growth techniques. Carbon source molecular beam epitaxy (CMBE) in particular provides an additional control parameter in carbon flux and enables growth on substrates other than SiC, including oxidized Si and sapphire. CMBE using thermally evaporated C60 and a heated graphite filament on SiC is reported here. The graphene films were characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and Hall effect. Graphene films on Si-face SiC grown using the C60 source have Bernal-like stacking and n-type conduction while those grown using the graphite filament have turbostratic stacking and p-type conduction. The sheet concentration for both n- and p-type doping is linearly dependent on film thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I. V., and Firov, A.A., Science 306, 666 (2004).Google Scholar
2. Karu, A. E. and Beer, M., J. Appl. Phys. 37, 2179 (1966).Google Scholar
3. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J.-H., Kim, P., Choi, J.-Y., and Kim, B. H., Nature 457, 706 (2009).Google Scholar
4. Li, X., Zhu, Y., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L. and Ruoff, R. S., Science 324, 1312 (2009).Google Scholar
5. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T. and Ruoff, R. S., Carbon, 45, 1558 (2007).Google Scholar
6. van Bommel, A. J., Crombeen, J. E., and van Tooren, A., Surf. Sci. 48, 463 (1975).Google Scholar
7. Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., and de Heer, W. A., Science 312, 1191 (2006).Google Scholar
8. Emtsev, K. V., Bostwick, A., Horn, K., Jobst, J., Kellog, G. L., Ley, L., McChesney, J. L., Ohta, T., Reshanov, S. A., Röhrl, J., Rotenberg, E., Schmid, A. K., Waldmann, D., Weber, H. B., and Seyller, Th., Naturer Mater. 8, 203 (2009).Google Scholar
9. Hackley, J., Ali, D., DiPasquale, J., Demaree, J. D., and Richardson, C. J. K., Appl. Phys. Lett. 95, 133114 (2009).Google Scholar
10. Al-Temimy, A., Riedl, C., and Starke, U., Appl. Phys. Lett. 95, 231907 (2009).Google Scholar
11. Moreau, E., Ferrer, F. J., Vignaud, D., Godey, S., and Wallart, X., Phys. Status Solidi A 207, 300 (2010).Google Scholar
12. Hwang, J., Shields, V. B., Thomas, C. I., Shivaraman, S., Hao, D., Kim, M., Woll, A. R., Tompa, G. S., and Spencer, M. G., J. Cryst. Growth 312, 3219 (2010).Google Scholar
13. Usachov, D., Adamchuk, V. K., Haberer, D., Grüneis, A., Sachdev, H., Preobrajenski, A. B., Laubschat, C., and Vyalikh, D. V., Phys. Rev. 82, 075415 (2010).Google Scholar
14. Park, J., Mitchel, W. C., Grazulis, L., Smith, H. E., Eyink, K. G., Boeckl, J. J., Tomich, D. H., Pacley, S. D., and Hoelscher, J. E., Adv. Mater. 22, 4140 (2010).Google Scholar
14. Mitchel, W. C., Park, J. H., Smith, H. E., Grazulis, L., and Eyink, K., Mater. Res. Soc. Symp. Proc. 1246, B1002 (2010).Google Scholar
15. Chen, D., Workman, R. K., and Sarid, D., J. Vac. Sci. Technol. B 14, 979 (1996).Google Scholar
16. Kolodney, E., Tsipinyuk, B. and Budrevich, A., J. Chem. Phys. 100, 8542 (1994).Google Scholar
17. Hamza, A. V., Balooch, M., and Moalem, M., Surf. Sci. 317, L1129 (1994).Google Scholar
18. Lampert, W. V., Eiting, C. J., Smith, S. A., Mahalingham, K., Grazulis, L., and Haas, T. W., J. Cryst. Growth 234, 369 (2002).Google Scholar
19. Li, J., Batoni, P., and Tsu, R., Thin Solid Films 518, 1658 (2010).Google Scholar
20. Malik, R. J., Nottenberg, R.N., Schubert, E. F., Walker, J. F., and Ryan, R. W., Appl. Phys. Lett. 56, 2651 (1988).Google Scholar
21. Joseph, M., Sivakumar, N., and Manoravi, P., Carbon 40, 2031 (2002).Google Scholar
22. Seyller, Th., Emtsev, K. V., Gao, K., Speck, F., Ley, L., Tadlich, A., Broekman, L., Riley, J. D., Lackey, R. C. C., Rader, O., Varykhalov, A., and Shikhin, A. M., Surf. Sci. 600, 3906 (2006).Google Scholar
23. Hass, J., de Heer, W. A. and Conrad, E. H., J. Phys.: Condens. Mattter 20, 1 (2008).Google Scholar
24. Yan, J., Zhang, Y., Kim, P., and Pinczuk, A., Phys. Rev. Lett. 98, 166802 (2007).Google Scholar
25. Schmidt, H., Lüdtke, T., Barthold, P., McCann, E., Fal’ko, V. I., and Haug, R. J., Appl. Phys. Lett. 93, 172108 (2008).Google Scholar