Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:46:33.893Z Has data issue: false hasContentIssue false

Fundamental Considerations Relating to the Insertion of Hydrogen Isotopes into Mixed Conductors at High Activities

Published online by Cambridge University Press:  28 February 2011

Robert A. Huggins*
Affiliation:
Department of Materials Science & EngineeringStanford UniversityStanford, CA 94305
Get access

Abstract

Some features of the electrochemical insertion of hydrogen isotopes into mixed conductors under dynamic electrolytic conditions are discussed. Unusual magnitudes of thermodynamic parameters in both the surface region and the bulk can be obtained under some conditions. These can vary greatly, depending upon the surface composition, as well as experimental conditions. It is thus possible to obtain species distributions and related phenomena inside solids during electrolysis at atmospheric pressure that are equivalent to those that would be present if there were a very high external pressure of one of the components.

The transport of hydrogen isotope interstitial species is very microstructure - dependent. Readily visible microstructural changes occur upon insertion and deletion of these species. This leads to the very sporadic nature of structure - dependent phenomena often observed. These considerations may play an important role in the apparent irreproducibility of experimental observations of the ‘cold fusion’phenomenon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Graham, T., Phil. Trans. Roy. Soc. (London) 156, 415 (1866).Google Scholar
2. Graham, T., Proc. Roy. Soc. (London) 16, 422 (1868).Google Scholar
3. Graham, T., Phil. Mag. 36, 63 (1868).Google Scholar
4. Wagner, C., Hauffe, K., Z. Elektrochem. 44, 172 (1938).Google Scholar
5. Wagner, C., Hauffe, K., Z. Elektrochem. 45, 409 (1939).Google Scholar
6. Schoennagel, H. J., Wagner, C., Ber. Bunsenges. phys. chem. 69, 699 (1965). 322Google Scholar
7. Kobayashi, H., Wagner, C., J. Chem. Phys. 26, 1609 (1957).Google Scholar
8. Schmalzried, H., Wagner, C., Trans. AIME 227, 539 (1963).Google Scholar
9. Bechtold, E., Ber. Bunsenges. phys. chem. 69, 328 (1965).CrossRefGoogle Scholar
10. Temkin, M. I., Pyzhev, V., Zhur. Fiz. Xhim. 13, 851 (1939).Google Scholar
11. Temkin, M. I., Pyzhev, V., Acta Physicochimica 12, 327 (1940).Google Scholar
12. Kemball, C., Disc. Faraday Soc. 41, 190 (1966).CrossRefGoogle Scholar
13. Ichikawa, S., Chem. Eng. Sci. 44, 2754 (1989).Google Scholar
14. Boudart, M., Catalysis Letters 3, 111 (1989).CrossRefGoogle Scholar
15. Wagner, C., Adv. in Catalysis 21, 323 (1970).Google Scholar
16. Oriani, R. A., in Annual Review of Materials Science Huggins, R. A., Ed. (Annual Reviews, Inc., 1978), p. 327.Google Scholar
17. Subramanyan, P. K., in Comp. Treatise of Electrochemistry (1981), p. 411.Google Scholar
18. Iyer, R. N., Pickering, H. W., in Annual Review of Materials Science Huggins, R. A., Ed. (Annual Reviews, Inc., 1990), p. 299.Google Scholar
19. Wicke, E., Brodowski, H., in Topics in Applied Physics, Vol129 Alefeld, G., Vöilkl, J., Eds. (Springer, 1978), p. 73.Google Scholar
20. Holleck, G., Wicke, E., Z. Physik. Chem. NF 56, 155 (1967).Google Scholar
21. Searson, P. C., 1990), to be publishedGoogle Scholar
22. Kapusta, S. D., Kam, T. T., Heusler, K. E., Z. phys. Chem. NF 123, 219 (1980).Google Scholar
23. Armacanqui, M. E., Oriani, R. A., Mat. Sci. Eng. 91, 143 (1987).Google Scholar
24. Jamieson, H. C., Weatherly, G. C., Manchester, F. D., J. Less Common Metals 50, 85 (1976).Google Scholar
25. Wriedt, H. A., Darken, L. S., Trans. Met. Soc. AIME 233, 111 (1965).Google Scholar
26. Podgurski, H., Oriani, R. A., Davis, F. N., Trans. Met. Soc. AIME 245, 1603 (1969).Google Scholar
27. Sasaki, Y., Matsumoto, T., Japan J. AppI. Phys. 11, 617 (1972).Google Scholar
28. Flanagan, T. B., Lynch, J. F., Clewley, J. D., Turkovich, B. v., J. Less Common Metals 49, 13 (1976)CrossRefGoogle Scholar
29. Flanagan, T. B., Lynch, J. F., J. Less Common Metals 49, 25 (1976).CrossRefGoogle Scholar
30. Laurent, J. P., Lapasset, G., Aucouturier, M., Lacombe, P., in Hydrogen in Metals Bernstein, I. M., Thompson, A. W., Eds. (ASM, 1974), p. 559.Google Scholar
31. Baukloh, W., Zimmermann, G., Arch. Eisenhaittenwesen 9, 459 (1936).Google Scholar
32. Smialowski, M., Szklarska-Smialowska, Z., Bull. Acad. pol. Sci. CL, III 2, 73 (1954).Google Scholar
33. Kerns, G. E., Wang, M. T., Staehle, R. W., in International Conference on Hydrogen Embrittlement and Stress Corrosion Cracking of Iron Base Alloys Unieux, France, 1973),Google Scholar
34. McCright, R. D., Staehle, R. W., in International Conference on Hydrogen Embrittlement and Stress Corrosion Cracking in Iron Base Alloys Unieux, France, 1973),Google Scholar
35. Hasegawa, H., Nakajima, K., J. Phys. F 9, 1035 (1979).Google Scholar
36. Sicking, G., Glugla, M., Huber, B., Ber. Bunsenges. Phys. Chem. 87, 418 (1983).Google Scholar
37. Bastien, P., Azou, P., C. R. Acad. Sci. Paris 232, 1845 (1951).Google Scholar
38. Frank, R. C., in Internal Stresses and Fatigue in Metals Rassweiler, G. M., Grube, W. L., Eds. (Elsevier, 1959), p. 411.Google Scholar
39. Broudeur, R., Fidelle, J. P., Auchere, H., in Int. Cong. Hydrogen in Metals (Editions Science et Industrie, Paris, 1972), p. 106.Google Scholar
40. Louthan, M. R. Jr., Caskey, G. R. Jr., Donovan, J. A., Rahl, D. E. Jr., Mater. Sci. Eng. 10, 357 (1972).Google Scholar
41. Bastien, P. G., in Physical Metallurgy of Stress Corrosion fracture Rhodin, T. N., Eds. (Interscience, 1959), p. 311.Google Scholar
42. Graville, B. A., Baker, R. G., Watkinson, F., Brit. Welding Jour. 14, 337 (1967).Google Scholar
43. Thompson, A. W., Met. Trans. 5A, 1855 (1974).Google Scholar
44. Thompson, A. W., Met. Trans. 6A, 1431 (1975).Google Scholar
45. Donovan, J. A., Met. Trans. 7A, 1677 (1976).Google Scholar
46. Wilcox, B. A., Smith, G. C., Acta Met. 13, 331 (1965).Google Scholar
47. Boniszewski, T., Smith, G. C., Acta Met 11, 165 (1963).CrossRefGoogle Scholar
48. Blakemore, J. S., Met. Trans. 1, 145 (1970).Google Scholar
49. Troiano, A. R., Trans. ASM 5, (1960).Google Scholar
50. Bastien, P., Azou, P., in First World Metallurgical Congress (ASM, Cleveland, Ohio (1951), p. 535.Google Scholar
51. McIntyre, P., Priest, A. H., British Steel Corp. Corporate Laboratories Report MG/31/72, (1972)Google Scholar
52. Ault, R. T. et al. , Trans. ASM 60, 79 (1967).Google Scholar