Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:30:55.010Z Has data issue: false hasContentIssue false

Fracture Toughness of Amorphous Precursor Derived Si-C-N Ceramics

Published online by Cambridge University Press:  21 March 2011

A. Bauer
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 5, 70569 Stuttgart, Germany
A. Zimmermann
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 5, 70569 Stuttgart, Germany
F. Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 5, 70569 Stuttgart, Germany
Get access

Abstract

Fully amorphous ceramics in the system silicon-carbon-nitrogen were produced with the polymer precursor route using the commercially available polysilazane CerasetTM. Besides their high temperature thermal stability, these ceramics show excellent high temperature creep resistance. Not many investigations have been dedicated to the fracture mechanics of these materials. This paper provides data on toughness measurements utilizing bulk and indentation techniques. The double cantilever beam method (DCB) was used to study crack propagation. To determine the intrinsic toughness, the crack opening displacements (COD) of indentation cracks were determined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Riedel, R., Kienzle, A., Dressler, W., Ruwisch, L., Bill, J., and Aldinger, F., Nature, 382, 796798 (1996).Google Scholar
2. Bill, J., Seitz, J., Thurn, G., Dürr, J., Canel, J., Janos, B. Z., Jalowiecki, A., Sauter, D., Schempp, S., Lamparter, H. P., Mayer, J., and Aldinger, F., Phys. Stat. Sol., 166, 269296 (1998).Google Scholar
3. Aldinger, F., Weinmann, M., and Bill, J., Pure & Appl. Chem., 70, 439448 (1998).Google Scholar
4. Haug, R., Weinmann, M., Bill, J. and Aldinger, F., J. Europ. Ceram. Soc., 19, 16 (1999).Google Scholar
5. Thurn, G., Canel, J., Bill, J., and Aldinger, F., J. Europ. Ceram. Soc., 19, 23172325 (1999).Google Scholar
6. Christ, M., Thurn, G., Weinmann, M., Bill, J. and Aldinger, F., J. Am. Ceram. Soc., 83, 30253032 (2000).Google Scholar
7. Bauer, A., Bill, J., Thurn, G., EUROMAT 99 - vol. 12, Wiley-VCH, 387391, (1999).Google Scholar
8. Arora, A., Marshall, D. B., Lawn, B. R. and Swain, M. V., J. Non-Cryst. Sol., 31, 415 (1979).Google Scholar
9. U.S. Patent 4,929,704; 5,001,090; 5,021,533; 5,032,649; 5,155,181Google Scholar
10. Seidel, J., Rödel, J., J. Am. Ceram. Soc., 80, 433438 (1997).Google Scholar
11. Murakami, Y., Stress Intensity Factors Handbook, Pergamon Press, (1987).Google Scholar
12. Heuer, A. H., J. Am. Ceram. Soc., 70, 689698 (1987).Google Scholar
13. Roedel, J., J. Europ. Ceram. Soc., 10, 143150 (1992).Google Scholar
14. Lawn, B. R., Fracture of Brittle Solids, 2nd Edition, Cambridge University Press, (1995).Google Scholar
15. Fett, T., Engng Fract. Mech., 52, 773776 (1995).Google Scholar