Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T18:09:10.817Z Has data issue: false hasContentIssue false

The Formation of Smooth, Defect-free, Stoichiometric Silicon Carbide Films from a Polymeric Precursor

Published online by Cambridge University Press:  01 February 2011

Michael Pitcher
Affiliation:
[email protected], METU, Chemistry, n/a, Ankara, n/a, 05631, Turkey
Patricia Bianconi
Affiliation:
[email protected], University of Massachusetts at Amherst, Department of Chemistry, Amherst, MA, 01003, United States
Get access

Abstract

Silicon carbide (SiC) materials, which are used in a variety of applications, are often produced using powder processing, sintering or bulk crystal growing techniques. The formation of silicon carbide films or shaped products, via these methods, is often extremely difficult and/or requires high temperatures. Here we report the synthesis and characterization of a polymeric precursor, Polymethylsilyne (PMSy), and it subsequent conversion to â-SiC. The polymer is simple to synthesize and is easily manipulated in air. The ceramic produced from PMSy is extremely pure, stoichiometric SiC and is produced in high yields (up to 85%). The ceramic films that can be produced from PMSy on a variety of substrates, from ceramics to metals, are again stoichiometric SiC and are smooth, continuous and defect free; possibly enabling the use of these films in electronic applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bianconi, P.A.; Weidman, T.W; J. Am. Chem. Soc. 1988, 7, 2342. Google Scholar
2 Huang, K.; Vermeulen, L.A. Chem. Commun. 1998, 247.Google Scholar
3 Miller, D.; Michl, J. Chem. Rev. 1989, 89, 1359. Google Scholar
4 Adlinger, F.; Katz, H. Angew. Chem. Intl. Ed. Engl. 1987, 26, 3049.Google Scholar
5 Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements; Pergammon Press: New York, 1989, p386. Google Scholar
6 Peukert, M; Vaahs, T; Bruck, M. Adv. Mater. 1990, 2, 398.Google Scholar
7 Yajima, S; Hayashi, J.; Omori, M. Chem. Lett. 1975, 931. (b) Yajima, S; Okamura, K.;Hayashi Chem. Lett. 1975, 1209. (c) Yajima, S; Okamura, K.;Hayashi, J.; Omori, M. J. Am. Ceram. Soc. 1976, 59(7-8), 324.Google Scholar
8 (a) Laine, R.M.; Babonneau, F. Chem. Mater. 1993, 5, 260. (b) Richter, R.; Roewer, G.; Bohme, Uwe.; Busch, K.; Babonneau, H.P.M.; Muller, E. Applied Organometallic Chemistry 1997, 11, 71. (c) Seyferth, D. Adv. Chem. Ser 1995, 245, 131. (d) Birot, M.; Pillot, J.P.; Dunogues, J. Chem. Rev. 1995, 95, 1443.Google Scholar
9 Gozzi, M.F.; Yoshida, I.V.P. Macromolecules 1995, 28, 7235.Google Scholar
10 Gozzi, M.F.; Gonçalves, M.D.C.; Yoshida, I.V.P. J.Mater.Sci 1999, 34(1), 155.Google Scholar
11 Boury, B.; Bryson, N.; Souda, G. Chem.Mater. 1998, 10, 297.Google Scholar
12 Boury, B.; Bryson, N.; Souda, G. Applied Organometallic Chemistry 1999, 13, 419.Google Scholar
13 Czubarow, P.; Sugimoto, T.; Seyferth, D. Macromolecules 1998, 31, 229.Google Scholar
14 Zhang, Z.F.; Babonneau, F.; Laine, R.M.; Mu, Y.; Harrod, J.F.; Rahn, J.A. J.Am.Ceram.Soc. 1991, 74(3), 670.Google Scholar
15 (a) Brough, L.F.; West, R. J.Am.Chem.Soc. 1981, 103, 3049. (b) West, R.; Indriksons, A. J.Am.Chem.Soc. 1972, 94, 6110.Google Scholar
16 Matyjaszewski, K; Kim, H.R. Polymer bulletin 1989, 22, 253.Google Scholar
17 Bianconi, P.A.; Schilling, F.C.; Weidman, T.W; Macromolecules 1989, 22, 1697.Google Scholar
18 Huang, K.; Vermeulen, L.A. Polymer 2000, 41(2), 441.Google Scholar
19 Scarlete, M.; Brienne, S.; Buttler, I.S.; Harrod, J.F. Chem.Mater. 1994, 6, 977.Google Scholar
20 Bullot, J.; Schimidt, M.P Phys.Stat.Sol.B 1987, 143, 345.Google Scholar
21 (a) Marsmann, H. In NMR Basic Principles and Progress; Springer-Verlag: Berlin, Heidelberg, and New York, 1981. (b) Schraml, J.; Bellama, J.M. In Determination of Organic Structures by Physical Methods; Nachod, E.C., Zuckerman, J.J., Randell, E.W, Eds.; Academic press: New York, 1976; Vol. 6, Chapter 4. (c) Harris, R.K; Kimber, B.J. J. Magn. Reson. 1974, 17, 174.Google Scholar
22 (a) West, R. J.Organomet.Chem. 1986, 300, 327. (b) West, R “Organopolysilanes” In Comprehensive Organometallic Chemistry; Abel, E., Ed.; Pergammon: Oxford, England, 1982; Chapter 9.4, pp 365-397. (c) Ziegler, J.M.; Harrah, L.A. Macromolecules 1987, 20, 601. (d) Miller, R.D.; Farmer, B.L.; Felming, W.; Sooriyakumaran, R.; Rabolt, J. J.Am.Chem.Soc. 1987, 109, 2509. (e) Cotts, P.M.; Miller, R.D.; Trefonas, P.T.; West, R.; Fickes, G. Macromolecules 1987, 20, 1046. (f) Klingensmith, K.A.; Downing, J.W.; Miller, R.D.; Michl, J. J.Am.Chem.Soc. 1986, 108, 7438. (g) Trefonas, P.T.; West, R.; Miller, R.D. J.Am.Chem.Soc. 1985, 107, 2737. (h) Schilling, F.C.; Bovey, F.A.; Ziegler, J.M. Macromolecules 1986, 19, 2309.Google Scholar
23 Durig, J.R.; Hawley, C.W. J.Chem.Phys. 1973, 59, 1.Google Scholar
24 Blinka, T.A.; Hilmer, B.J.; West, R. Adv. Organomet.Chem. 1984, 23, 193.Google Scholar
25 Bradley, H.B., In Standard Methods of Chemical Analysis; Furman, N.H., Ed.; D. Van Nostrand Company, Inc.: Princeton, New Jersey, Vol. 1, 6 Ed., 1962; pp 963–5.Google Scholar
26 Carduner, K.R.; Shinozaki, S.S.; Rokosz, M.J.; Peters, C.R.; Whalen, T.J. J. Am. Ceram. Soc. 1990, 73(8), 2281.Google Scholar
27 Chew, K.W.; Sellinger, A.; Laine, R.M. J.Am.Ceram.Soc. 1999, 82(4), 857.Google Scholar
28 Pitcher, M.W.; Joray, S.J.; Bianconi, P.A. Adv.Mater. 2004, 16(8), 706.Google Scholar
29 Bianconi, P.A., Pitcher, M.W. and Joray, S.J. US Patent 6,989,428 (2006).Google Scholar