Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T00:43:00.977Z Has data issue: false hasContentIssue false

Formation of CdTe and GaAs by Electrochemical Atomic Layer Epitaxy (ECALE)

Published online by Cambridge University Press:  16 February 2011

D. Wayne Suggs
Affiliation:
School of Chemical Sciences, University of Georgia, Athens, Georgia 30602
Ignacio Villegas
Affiliation:
School of Chemical Sciences, University of Georgia, Athens, Georgia 30602
Brian W. Gregory
Affiliation:
School of Chemical Sciences, University of Georgia, Athens, Georgia 30602
John L. Stickney
Affiliation:
School of Chemical Sciences, University of Georgia, Athens, Georgia 30602
Get access

Abstract

The principles of Atomic Layer Epitaxy (ALE) have been applied to the formation of compound semiconductors by an electrochemical technique, referred to as Electrochemical Atomic Layer Epitaxy (ECALE). Atomic layers of the component elements are alternately electrodeposited at underpotential (UPD) from separate solutions and at separate potentials. Results are presented concerning the structures of both CdTe and GaAs deposits formed by ECALE. Studies were performed using singlecrystalline Au electrodes in a UHV surface analysis instrument coupled directly with an electrochemical cell. This instrument was used in order to prevent corruption by contact with air during transfer to the surface analysis environment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gregory, B.W. and Stickney, J.L., J. Electroanal. Chem. 300, 543 (1991).CrossRefGoogle Scholar
2. Kolb, D.M., Advances in Electrochemistry and Electrochemical Engineering, Vol.11, Eds. Gerischer, H. and Tobias, C.W. (John Wiley: New York, 1978), p. 125; K. Juttner and W.J. Lorenz, Z. Phys. Chem. N.F., 122, 163 (1980).Google Scholar
3. Ross, P.N. Jr., Surf. Sci., 102, 463 (1981).CrossRefGoogle Scholar
4. Droog, J.M.M. and Schlenter, B., J. Electroanal. Chem., 112, 387 (1980).Google Scholar
5. Bravo, B.G., Michelhaugh, S.L., Soriaga, M.P., Villegas, I., Suggs, D.W., and Stickney, J.L., J. Phys. Chem., in press.Google Scholar
6. Panicker, M.P.R., Knaster, M., and Kroger, F.A., J. Electrochem. Soc., 125, 566 (1978).CrossRefGoogle Scholar
7. Tomkiewicz, M., Ling, I., and Parsons, W.S., J. Electrochem. Soc., 129, 2016 (1982).CrossRefGoogle Scholar
8. Gregory, B.W., Norton, M.L., and Stickney, J.L., J. Electroanal. Chem., 293, 85 (1990).Google Scholar
9. Villegas, I. and Stickney, J.L., J. Electrochem. Soc., 138, 1310 (1991).CrossRefGoogle Scholar
10. Stickney, J.L., Ehlers, C.B., and Gregory, B.W., Electrochemical Surface Science: Molecular Phenomena at Electrode Surfaces, ACS Symposium Series, no. 378, Ed. Soriaga, M.P. (American Chemical Society: Washington, D.C., 1988), p. 99.CrossRefGoogle Scholar
11. Conway, B.E., Angerstein-Kozlowska, H., Sharp, W.B.A., and Criddle, E.E., Anal. Chem., 45, 1331 (1973).CrossRefGoogle Scholar
12. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press: Oxford, 1966).Google Scholar
13. Schardt, B.C., Stickney, J.L., Stern, D.A., Wieckowski, A., Zapien, D.C., and Hubbard, A.T., Surf. Sci., 175, 520 (1986).CrossRefGoogle Scholar
14. Suggs, D.W. and Stickney, J.L., J. Phys. Chem., submitted.Google Scholar
15. Pashley, M.D., Haberern, K.W. and Woodall, J.M., J. Vac. Sci. Technol. B 6 (1988) 1468; D.K. Biegelsen, L.-E. Swartz, and R.D. Bringans, J. Vac. Sci. Technol. A 8 280 (1990).CrossRefGoogle Scholar
16. Ogletree, D.F., Hwang, R.Q., Zeglinski, D.M., Vazquez-de-Parga, A.L., Somorjai, G. A., Salmeron, M., J. Vac. Sci. Tech. B, 2, 886 (1991).CrossRefGoogle Scholar