Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:16:13.218Z Has data issue: false hasContentIssue false

First-principles Study of Defect Migration in RE-doped Ceria (RE = Pr, Gd)

Published online by Cambridge University Press:  02 February 2011

Pratik Dholabhai
Affiliation:
Materials Science & Engineering, Arizona State University, Tempe, AZ 85287
James Adams
Affiliation:
Materials Science & Engineering, Arizona State University, Tempe, AZ 85287
Peter Crozier
Affiliation:
Materials Science & Engineering, Arizona State University, Tempe, AZ 85287
Renu Sharma
Affiliation:
Materials Science & Engineering, Arizona State University, Tempe, AZ 85287 Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

Oxygen vacancy formation and migration in ceria is central to its performance as an ionic conductor. Ceria doped with suitable aliovalent dopants has enhanced oxygen ion conductivity – higher than that of yttria stabilized zirconia (YSZ), the most widely used electrolyte material in solid oxide fuel cells (SOFC). To gain insight into atomic defect migration in this class of promising electrolyte materials, we have performed total energy calculations within the framework of density functional theory (DFT+U) to study oxygen vacancy migration in ceria, Pr-doped ceria (PDC) and Gd-doped ceria (GDC). We report activation energies for various oxygen vacancy migration pathways in PDC and GDC. Results pertaining to the preferred oxygen vacancy formation sites and migration pathways in these materials will be discussed in detail. Overall, the presence of Pr and Gd ions significantly affects oxygen vacancy formation and migration, in a complex manner requiring the investigation of many different migration events. We propose a relationship that explains the role of additional dopants in lowering the activation energy for vacancy migration in PDC and GDC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mogensen, M., Sammes, N. M., Tompsett, G. A., Solid State Ionics 129, 63 (2000).Google Scholar
[2] Takasu, Y., Sugino, T., Matsuda, Y., J. App. Electrochem. 14, 79 (1984).Google Scholar
[3] Nauer, M., Fticos, Ch., Steele, B. C. H., J. Eur. Ceram. Soc. 14, 493 (1994).Google Scholar
[4] Shuk, P., Greenblatt, M., Solid State Ionics 116, 217 (1999).Google Scholar
[5] Steele, B. C. H., Heinzel, A., Nature 414, 345 (2001).Google Scholar
[6] Steele, B. C. H., Solid State Ionics 129, 95 (2000).Google Scholar
[7] Andersson, D. A., Simak, S. I., Skorodumova, N. V., Abrikosov, I. A., Johansson, B., Proc. Natl. Acad. Sci. 103, 3518 (2006).Google Scholar
[8] Hohenberg, P., Kohn, W., Phys. Rev., 1994 136, B864; W. Kohn, L. J. Sham, Phys. Rev. 140, A1133 (1965).Google Scholar
[9] Perdew, J. P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
[10] Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., Sutton, A. P., Phys. Rev. B 57, 1505 (1998).Google Scholar
[11] Dholabhai, P. P., Adams, J. B., Crozier, P. and Sharma, R., J. Chem. Phys. 132, 094104 (2010).Google Scholar
[12] Dholabhai, P. P., Adams, J. B., Crozier, P. and Sharma, R., Phys. Chem. Chem. Phys. 12, 7904 (2010).Google Scholar
[13] Bhochl, P. E., Phys. Rev. B 50, 17953 (1994).Google Scholar
[14] Kresse, G., Joubert, D., Phys. Rev. B 59, 1758 (1999).Google Scholar
[15] Kresse, G., Hafner, J., Phys. Rev. B 47, 558 (1993).Google Scholar
[16] Kresse, G., Furthmuller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar