Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:51:07.623Z Has data issue: false hasContentIssue false

Ferroelectric Field Effect Device

Published online by Cambridge University Press:  11 February 2011

A. G. Schrott
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598.
J. A. Misewich
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598.
R. Ramesh
Affiliation:
Materials Research Science and Engineering. Center, University of Maryland, College Park, MD 20742
V. Nagarajan
Affiliation:
Materials Research Science and Engineering. Center, University of Maryland, College Park, MD 20742
Get access

Abstract

A ferroelectric field effect transistor with an oxide channel layer and a lead zirconate titanate gate oxide has been fabricated. The channel is a strontium ruthenate/titanate solid solution with n type semiconducting behavior, which has sufficient OFF-state free carrier concentration to provide proper balancing charge for ferroelectric stability. The dependence of channel resistance with gate voltage at room temperature yields a hysteresis curve with two state at zero volts with a ΔR/R of 75% and a coercive voltage of 3 volts. The device was subjected to more than 1010 cycles with no degradation and was also operated at 60° C with a only a slight reduction in the switching ratio.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takasu, H., J. Electroceram. 4:2/3, 327 (2000).Google Scholar
2. Scott, J.F., IEICE Trans. Electron. E81, 477 (1998).Google Scholar
3. Toyoshima, H. and Kobatake, H., NEC Res. & Develop. 40, 206, (1999).Google Scholar
4. Rost, T. A., Lin, H., and Rabson, T. A., Appl. Phys. Lett. 59, 3654 (1991).Google Scholar
5. Fujimori, Y., Izumi, N., Nakamura, T., and Kamisawa, A., Integrated Ferroelectrics 21, 73 (1998).Google Scholar
6. Fujimori, Y., Izumi, N., Nakamura, T., and Kamisawa, A., Jpn. J. Appl. Phys. 37, 5207 (1998).Google Scholar
7. Watanabe, Y., Appl. Phys. Lett. 66, 1770 (1995).Google Scholar
8. Prins, M.W.J., Grosse-Holz, K.-O., Mueller, G., Cillessen, J.F.M., Giesbers, J.B., Weening, R.P., and Wolf, R.M., Appl. Phys. Lett 68, 3650 (1996);Google Scholar
Prins, M.W.J., Zinnemers, S.E., Cillessen, J.F.M., Giesbers, J.B., Appl. Phys. Lett. 70, 458 (1997).Google Scholar
9. Mathews, S., Ramesh, R., Venkatesan, T., Benedetto, J., Science 276, 238 (1997).Google Scholar
10. Wurfel, P. and Batra, I.P., Phys. Rev. B 8, 5126(1973);Google Scholar
Okuyama, M., Sugiyama, H., Nakaiso, T., Noda, M., Integr. Ferroelectrics 34, 37 (2001).Google Scholar
11. Singh, D. J., J. Appl. Phys. 79, 4818 (1996).Google Scholar
12. Eom, C. B., Cava, R.J., Fleming, R.M., Phillips, J.M., van Dover, R.B., Marshall, J.H., Hsu, J.W.P., Krajewski, J.J., and Peck, W.F. Jr, Science 258, 1766 (1992);Google Scholar
Eom, C.B., Rao, R.A., Gan, Q., Wasa, K., Werder, D.J., Integr. Ferroelectrics 21, 251(1998).Google Scholar
13. Ahn, C.H., Hammond, R.H., Geballe, T.H., and Beasley, M.R., Triscone, J.M., Decroux, M., Fisher, O., Antognazza, A. and Char, K., Appl. Phys. Lett. 70, 206 (1997).Google Scholar
14. Sefrioui, Z., Arias, D., Navacerrada, M.A., Varela, M., Loos, G., Lucia, M., Santamaria, J., Sanchez-Quesada, F., and Lopez de la Torre, M.A., Appl Phys. Lett. 73, 3375 (1998).Google Scholar
15. Bianchi, R.F., Carrio, J.A.G., Cuffini, S.L., Mascarenhas, Y.P., and Faria, R.M., Phys. Rev. B 62, 10785 (2000).Google Scholar
16. Shimizu, T. and Kawakubo, T., Jpn. J. Appl. Phys. 40, L117(2001).Google Scholar
17. Misewich, J.A. and Schrott, A.G., Appl. Phys. Lett. 76, 3632 (2000).Google Scholar
18. Schrott, A.G., Misewich, J.A., Scott, B.A., Gupta, A., Newns, D. M., Abraham, D.W. in Multicomponent Oxide Films for Electronics, edited by Hawley, M.E., Blank, D.H., Eom, C-B., and Streiffer, S.K. (Mat. Res. Soc. Proc. 574, Pittsburgh, PA, 1999) pp. 243248.Google Scholar
19. Schrott, A.G., Misewich, J.A., Copel, M., Abraham, D.W., and Neumayer, D.A., in Materials Science of Novel Oxide-Based Electronics, edited by Ginley, D.S., Newns, D.M., Kawazoe, H., Kozyrev, A.B., Perkins, J.D. (Mat. Res. Soc. Proc. 623, Pittsburgh, PA, 2000)pp. 2531.Google Scholar
20. Tehrani, S., Engel, B., Slaughter, J.M., Chen, E., DeHerrera, M., Durlam, M., Naji, P., Whig, R., Janesky, J., and Calder, J., IEEE Trans. Magn. 36, 2752 (2000).Google Scholar
21. Ganpule, C.S., Stanishevsky, A., Su, Q., Aggarwal, S., Meingailis, J., Williams, E., and Ramesh, R., Appl. Phys. Lett. 75, 409(1999).Google Scholar
22. Ganpule, C.S., Stanishevsky, A., Aggarwal, S., Meingailis, J., Williams, E., Ramesh, R., Joshi, V. and Araujo, Carlos Paz de, Appl. Phys. Lett. 75, 3874 (1999).Google Scholar