Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T09:42:40.669Z Has data issue: false hasContentIssue false

Extended Quantum Model for Porous Silicon Formation

Published online by Cambridge University Press:  28 February 2011

H. Münder
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülien, Germany
St. Frohnhoff
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülien, Germany
M.G. Berger
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülien, Germany
M. Marso
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülien, Germany
M. Thönissen
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülien, Germany
R. Arens-Fischer
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülien, Germany
H. Lüth
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülien, Germany
Get access

Abstract

The formation of porous silicon (PS) by electrochemical dissolution of bulk Si is described by a new model involving quantum mechanical calculations of the tunneling probability of holes through small crystallites (< 60 Å) into the electrolyte. This tunneling probability shows oscillations as a function of crystallite size. The presented model calculations are in agreement to the microstructure of p-PS — deduced from Raman measurements — as a function of etching parameters and substrate doping level.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Uhlir, A., Bell Syst. Tech. J. 35, 333 (1956).Google Scholar
2 Pickering, C., Beale, M., Robbins, D., Pearson, P., and Greef, R., J. Phys. C: Solid State Phys. 17, 5535 (1984).Google Scholar
3 Beale, M., Benjamin, J., Uren, M., Chew, N., and Cullis, A., J. Cryst. Growth 73, 622 (1985).Google Scholar
4 Beale, M., Benjamin, J., Uren, M., Chew, N., and Cullis, A., Appl. Phys. Lett. 46, 86 (1985).Google Scholar
5 Lehmann, V., Cerva, H., and Gösele, U., Mat. Res. Soc. Symp. Proc. 256, 3 (1992).Google Scholar
6 Smith, R., Chuang, S., and Collins, S., J. Electronic Materials 17, 533 (1988).Google Scholar
7 Münder, H., Berger, M., Frohnhoff, S., Thönissen, M., and Lüth, H., J. of Luminescence 57, 5 (1993).Google Scholar
8 Read, A. et al. , Phys. Rev. Lett. 69, 1232 (1992).Google Scholar
9 Sanders, G. and Chang, Y.-C., Phys. Rev. B 45, 856 (1992).Google Scholar
10 Chandra, A. and Eastman, L., J. Appl. Phys. 53, 9165 (1982).Google Scholar
11 Frohnhoff, S. et al. , J. Electrochem. Soc., in press (1994).Google Scholar
12 Frohnhoff, S. et al. , to be published.Google Scholar