Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:49:40.391Z Has data issue: false hasContentIssue false

Experimental Evidence of Non-Diffusive Thermal Transport in Si and GaAs

Published online by Cambridge University Press:  23 August 2011

Jeremy A. Johnson
Affiliation:
Dept. of Chemistry, MIT, 77 Massachusetts Ave, Cambridge, MA 02139, U.S.A.
Alexei A. Maznev
Affiliation:
Dept. of Chemistry, MIT, 77 Massachusetts Ave, Cambridge, MA 02139, U.S.A.
Jeffrey K. Eliason
Affiliation:
Dept. of Chemistry, MIT, 77 Massachusetts Ave, Cambridge, MA 02139, U.S.A.
Austin Minnich
Affiliation:
Dept. of Mechanical Engineering, MIT, 77 Massachusetts Ave, Cambridge, MA 02139, U.S.A.
Kimberlee Collins
Affiliation:
Dept. of Mechanical Engineering, MIT, 77 Massachusetts Ave, Cambridge, MA 02139, U.S.A.
Gang Chen
Affiliation:
Dept. of Mechanical Engineering, MIT, 77 Massachusetts Ave, Cambridge, MA 02139, U.S.A.
John Cuffe
Affiliation:
Catalan Institute of Nanotechnology, Campus de Bellaterra, Edifici CM7, ES 08192, Barcelona, Spain. Dept. of Physics, Tyndall National Institute, University College Cork, College Road, Ireland.
Timothy Kehoe
Affiliation:
Catalan Institute of Nanotechnology, Campus de Bellaterra, Edifici CM7, ES 08192, Barcelona, Spain.
Clivia M. Sotomayor Torres
Affiliation:
Catalan Institute of Nanotechnology, Campus de Bellaterra, Edifici CM7, ES 08192, Barcelona, Spain. Catalan Institute for Research and Advanced Studies ICREA, 08010, Barcelona, Spain Dept. of Physics, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
Keith A. Nelson
Affiliation:
Dept. of Chemistry, MIT, 77 Massachusetts Ave, Cambridge, MA 02139, U.S.A.
Get access

Abstract

The length-scales at which thermal transport crosses from the diffusive to ballistic regime are of much interest particularly in the design and improvement of nano-structured materials. In this work, we demonstrate that the departure from diffusive transport has been observed in Si and GaAs using an optical transient thermal grating technique where an arbitrary, experimentally set length scale can be imposed on a material. In a transient thermal grating experiment, crossed laser pulses interfere creating a well-defined periodic absorption and temperature profile. A probe beam is diffracted from this transient grating and length-scale dependent thermal transport properties can be determined from the signal decay. As the length scale is decreased to lengths shorter than the mean free paths of heat carrying phonons, quasi-ballistic heat transport effects become apparent allowing us to map out length scales and mean free paths relevant to nondiffusive thermal transport in Si and GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, G.. Phys. Rev. B 57, 14958 (1998).Google Scholar
2. Holland, M. G.. Phys. Rev. 132, 2461 (1963).Google Scholar
3. McQuarrie, D. A.. Statistical Mechanics, (University Science Books, 2000) pp 358-362.Google Scholar
4. Henry, A., Chen, G.. J. Comp. Theor. Nanosci. 5, 1 (2008).Google Scholar
5. Ward, A., Broido, D. A.. Phys. Rev. B 81, 085205 (2010).Google Scholar
6. Siemens, M., Li, Q., Yang, R., Nelson, K. A., Anderson, E., Murnane, M., and Kapteyn, H., Nature Mater. 9, 26 (2010).Google Scholar
7. Highland, M., Gundrum, B. C., Koh, Yee Kan, Averback, R. S., Cahill, D. G., Elarde, V. C., Coleman, J. J., Walko, D. A., Landahl, E. C.. Phys. Rev. B, 76, 075337, (2007).Google Scholar
8. Eichler, H.J., Günter, P., and Pohl, D. W.. Laser-Induced Dynamic Gratings (Springer, 1986).Google Scholar
9. Rogers, J. A., Yang, Y., Nelson, K. A.. Appl.Phys. A 58, 523 (1994).Google Scholar
10. Othonos, A.. J. Appl. Phys. 83, 1789 (1998).Google Scholar
11. Maznev, A. A., Rogers, J. A., Nelson, K. A.. Optics Letters, 23, 1319, 1998.Google Scholar
12. Johnson, J.A., Maznev, A.A., Bulsara, M.T., Fitzgerald, E.A., Harman, T.C., Calawa, S., Vineis, C.J., Turner, G., Nelson, K.A.. In preparation.Google Scholar
13. Käding, O. W., Skurk, H., Maznev, A. A., Matthias, E.. Appl. Phys. A 61, 253, 1995.Google Scholar
14. Joshi, A. A., Majumdar, A., J. Appl. Phys. 74, 31 (1993).Google Scholar
15. Koh, Y. K., Cahill, D. G., Phys. Rev. B, 76, 075207 (2007).Google Scholar
16. Maznev, A.A., Johnson, J. A., Chen, G., Nelson, K. A., In preparation.Google Scholar
17. Liu, W., Etessam-Yazdani, K., Hussin, R., Asheghi, M., IEEE TED, 53, 1868 (2006).Google Scholar
18. Sondheimer, E.H., Phil. Mag. 1, 1 (1952).Google Scholar