Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T18:05:15.082Z Has data issue: false hasContentIssue false

Evolutionary Growth Development in SiC Sputtered Films

Published online by Cambridge University Press:  21 February 2011

R. A. Roy
Affiliation:
The Pennsylvania State University, Materials Research Laboratory, University Park, PA 16802
R. Messier
Affiliation:
The Pennsylvania State University, Materials Research Laboratory, University Park, PA 16802
Get access

Abstract

The growth of rf-sputtered silicon carbide thin films has been studied over a wide range of substrate temperatures, producing films with crystal structures from completely amorphous to highly crystalline. The initial 100nm of growth is characterized by ‘void network’ type physical structure throughout the temperature regime studied. This network of polyhedra outlines the dominant physical structure features at the top surface of the film and is shown to grow in average lateral dimension (D) with increasing film thickness (t) as a parabola (D=K·tx). The growth exponent (x) describes the lateral growth rate of these parabolic growth cone columns and decreases with increasing film temperature, bombardment, and hydrogen in the plasma. In the highly crystalline films the lateral crystallite growth rate eventually exceeds the growth of void network columns present in 10–100nm films, producing abrubt increases in size of physical features between 100–1000nm levels. The results show that the evolutionary structure zone model consistently accounts for film growth behavior in the amorphous regime but must be modified for crystalline films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Messier, R., Girn, A.P., Roy, R.A., J. Vac. Sci. Technol. A2, 500 (1984).Google Scholar
2. Messier, R. and Ross, R.C., J. Appl. Phys. 53, 6220 (1982).Google Scholar
3. Girn, A.P. and Messier, R., Mat. Res. Soc. Symp. Proc. 24. 221 (1984).Google Scholar
4. Roy, R.A. and Messier, R., J. Vac. Sci. Technol. A 2, 312 (1984).Google Scholar
5. Knights, J.C., J. Non-Cryst. Solids 35, 159 (1980).Google Scholar
6. Knights, J.C. and Lujan, R.A., Appl. Phys. Lett. 35, 244 (1979).CrossRefGoogle Scholar
7. Donovan, T.M. and Heinemann, K., Phys. Rev. Lett. 27, 1794 (1971).Google Scholar
8. Hauser, J.J. and Staudinger, A., Phys. Rev. B 8, 607 (1973).Google Scholar
9. Shih, D.Y. and Ficarola, P.J., J. Vac. Sci. Technol. A 2, 225 (1984).Google Scholar
10. Mogab, C.J., Petroff, P.J. and Sheng, T.T., J. Electrochem. Soc. 122 (1975).Google Scholar
11. Barna, A., Barna, P.B., Radnoczi, G., Toth, L. and Thomas, P., Phys. Stat. Sol. (9), 41, 81 (1977).Google Scholar
12. Das, S.R., Williams, D.F. and Webb, J.B., J. Appl. Phys. 54, 3101 (1983).Google Scholar
13. Leamy, H.J., Gilmer, G.H. and Dirks, A.G., in Current Topics in Materials Science, Vol.6, edited by Kaldis, E. (North- Holland) p. 309 (1980).Google Scholar
14. Nakahara, S., Thin Solid Films 64, 149 (1979).Google Scholar
15. Gilbert, L.R., Messier, R. and Roy, R., Thin Solid Films 54, 149 (1978).Google Scholar
16. Lowe, A.T. and Fries, R.J., Surf. Sci. 76, 242 (1978).Google Scholar
17. Burt, R.J., Meyer, S.F. and Hsieh, E.J., J. Vac. Sci. Technol. 17, 407 1980).Google Scholar
18. Spalvins, T. and Brainard, W.A., J. Vac. Sci. Technol. 11, 1186 (1974).Google Scholar
19. Thornton, J.A., Ann. Rev. Mater. Sci. 7, 239 (1977) and references contained therein.Google Scholar
20. Serikawa, T. and Yachi, T., Jpn. J. Appl. Phys. 20, L111 (1981).Google Scholar
21. Ishida, H., Noda, M. and Shimizu, H., Jap. J. Appl. Phys. 22, L73 (1983).Google Scholar
22. Wieder, H., Cardona, M., Guarnieri, C.R., Phys. Stat. Sol. (b), 92, 99 (1979).Google Scholar
23. Coffin, L.F., J. Am. Ceram. Soc. 47, 473 (1964).Google Scholar
24. Movchan, B.A. and Demohishin, A.V., Phys.Met. Mettalogr. 28, 83 (1969).Google Scholar