Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T14:34:39.784Z Has data issue: false hasContentIssue false

Epitaxial NiO-Co exchange-biased bilayers grown on MgO single crystals Influence of the substrate orientation on the film morphology, the Co structure and the magnetic behavior

Published online by Cambridge University Press:  21 March 2011

B. Warot
Affiliation:
CEMES-CNRS, BP4347, 31055 Toulouse, France
E. Snoeck
Affiliation:
CEMES-CNRS, BP4347, 31055 Toulouse, France
J.C. Ousset
Affiliation:
CEMES-CNRS, BP4347, 31055 Toulouse, France
M.J. Casanove
Affiliation:
CEMES-CNRS, BP4347, 31055 Toulouse, France
S. Dubourg
Affiliation:
LPMC-INSA, 31077 Toulouse, France
A.R. Fert
Affiliation:
LPMC-INSA, 31077 Toulouse, France
J.F. Bobo
Affiliation:
LPMC-INSA, 31077 Toulouse, France
Get access

Abstract

Co/NiO bilayers have been grown on MgO(001), MgO(110) and MgO(111) substrates in an ultra high vacuum sputtering chamber. Growth mode and surface morphology are investigated by X-ray diffraction, Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM) and High Resolution Transmission Electron Microscopy (HRTEM). NiO layers grow epitaxially whatever the substrate orientation. Flat surfaces are observed on NiO/MgO(001) whereas on MgO(110) the NiO surface exhibits a roof-like morphology consisting in (100) and (010) facets elongated along the [001] direction. On MgO(111), the NiO surface presents pyramids with {100} facets. A temperature dependence of the cobalt layer structure is observed: on NiO(001) at room temperature it grows in its high temperature face-centered cubic structure (fcc), whereas it has the hexagonal close-packed structure (hcp) when deposited at slightly higher temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Michel, R.P., Chaiken, A., Wang, C.T., Johnson, L.E., Phys. Rev. B 58, 8566 (1998).Google Scholar
[2]Chopra, H.D., Hockey, B.J., Chen, P.J., McMichael, R.D., Egelhoff, W.F., J. Appl. Phys. 81, 4017 (1997).Google Scholar
[3]Devasahayam, A.J., Kryder, M.H., J. Appl. Phys. 85, 5519 (1999).Google Scholar
[4]Warot, B., Snoeck, E., Baules, P., Ousset, J.C., Casanove, M.J., Dubourg, S., Bobo, J.F., in press J. Appl. Phys. (2001).Google Scholar
[5]Warot, B., Snoeck, E., Baulès, P., Ousset, J.C., Casanove, M.J., Dubourg, S., Bobo, J.F., J.Crystal Growth 224, 309 (2001).Google Scholar
[6]Warot, B., Snoeck, E., Baulès, P., Ousset, J.C., Casanove, M.J., Dubourg, S., Bobo, J.F., in press Applied Surface Science (2001).Google Scholar
[7]Bobo, J.F., Dubourg, S., Snoeck, E., Warot, B., Baulès, P. and Ousset, J.C., J. Magn. Magn. Mater. 206, 118126 (1999).Google Scholar
[8]Dubourg, S., Bobo, J.F., Warot, B., Snoeck, E. and Ousset, J.C., submitted to Phys. Rev. B (2001).Google Scholar
[9]Leeuw, N.H. de, Watson, G.W., Parker, S.C., J.Phys.Chem. 99, 17219 (1995).Google Scholar
[10]Tasker, P.W., Duffy, D.M., Surface Science 137, 91 (1984).Google Scholar
[11]Kief, M.T., Egelhoff, W.F., Phys. Rev. B 47, 10785 (1993).Google Scholar