Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T19:35:04.218Z Has data issue: false hasContentIssue false

Epitaxial Ferroelectric Heterostructures of Isotropic Metallc Oxide (SrRuO3) and Pb(Zr0.52Ti0.48)O3

Published online by Cambridge University Press:  21 February 2011

C. B. Eom
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R.B. Van Dover
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Julia M. Phillips
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R.M. Fleming
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R.J. Cava
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J.H. Marshall
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D.J. Werder
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
C.H. Chen
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D.K Fork
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
Get access

Abstract

We have fabricated epitaxial ferroelectric heterostructures of isotropic metallic oxide (SrRuO3) and ferroelectric thin films [SrRuO3/Pb(Zr0.52Ti0.48)O3 /SrRuO3] on (100) SrTiO3 and YSZ buffer layered Si substrates by 90° off-axis sputtering. These heterostructures have high crystalline quality and coherent interfaces as revealed by X-ray diffraction, Rutherford backscattering spectroscopy and cross-sectional transmission electron microscopy. The ferroelectric layers exhibit superior fatigue characteristics over 1010 cycles with large remnant polarization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scott, J.F. and Araujo, C.A. Paz de, Science, 246, 1400, (1989).CrossRefGoogle Scholar
2. Ramesh, R., Inam, A., Chan, W.K., Tillerot, F., Wilkens, B., Chang, C.C., Sands, T., Tarascon, J.M. and Keramidas, V.G., Appl. Phys. Lett. 59, 3542, (1991).CrossRefGoogle Scholar
3. Ramesh, R., Inam, A., Chan, W.K., Wilkens, B., Myers, K., Remschnig, K., Hart, D.L., Tarascon, J.M., Science, 252, 944, (1991).CrossRefGoogle Scholar
4. Eom, C. B. et al. , Science, 258, 1766 (1993)CrossRefGoogle Scholar
5. Loan, Paul R. Van, Ceramic Bulletin, 51, 231, (1972).Google Scholar
6. Bouchard, R.J. and Gillson, J.L., Mat. Res. Bull, 7, 873, (1972).CrossRefGoogle Scholar
7. Bensch, W., Schmalle, H.W., Reller, A., Solid State Ionics, Diffusion & Reactions, 43, 171, (1990).CrossRefGoogle Scholar
8. Eom, C.B. et al. , Appl. Phys. Lett., 55, 595, (1989).CrossRefGoogle Scholar
9. Eom, C.B. et al. , Physica C 171, 351, (1990).CrossRefGoogle Scholar
10. , Klein et al. , Materials Research Society Symposium Proceedings, 243, 167, (1992).Google Scholar
11. Eom, C. B., Marshall, A. F., Triscone, J.-M., Wilkens, B., Laderman, S. S., and Geballe, T. H., Science, 251, 780, (1991).CrossRefGoogle Scholar
12. Eom, C. B. et al. , in preparationGoogle Scholar
13. Sawyer, C.B. and Tower, C.H., Phy. Rev. 35, 269, (1930).CrossRefGoogle Scholar
14. Evans, J.T., private communicationGoogle Scholar
15. Bernstein, S.D., Wong, T.Y., Kisler, Y., and Tustison, R.W., J. Mater. Res., 8, 12, (1993).CrossRefGoogle Scholar
16. Cheung, J.T. et al. , 1993 Materials Research Society Spring Meeting, San Francisco, CA. April (1993).Google Scholar