No CrossRef data available.
Article contents
Environmentally-benign cleaning for giga DRAM using electrolyzed water
Published online by Cambridge University Press: 18 March 2011
Abstract
A present semiconductor cleaning technology is based upon RCA cleaning technology which consumes vast amounts of chemicals and ultra pure water(UPW) and is the high temperature process. Therefore, this technology gives rise to the many environmental issues, and some alternatives such as functional water cleaning are being studied. The electrolyzed water was generated by an electrolysis system which consists of anode, cathode, and middle chambers. Oxidative water and reductive water were obtained in anode and cathode chambers, respectively. In case of NH4Clelectrolyte, the oxidation-reduction potential and pH for anode water(AW) and cathode water(CW) were measured to be +1050mV and 4.8, and -750mV and 10.0, respectively. AW and CW were deteriorated after electrolyzed, but maintained their characteristics for more than 40 minutes sufficiently enough for cleaning. Their deterioration was correlated with CO2 concentration changes dissolved from air. It was known that AW was effective for Cu removal, while CW was more effective for Fe removal. The particle distributions after various particle removal processes maintained the same pattern. In this work, RCA consumed about 9 chemicals, while EW did only 400ml HCl electrolyte or 600ml NH4Cl electrolyte. It was hence concluded that EW cleaning technology would be very effective for eliminating environment, safety, and health(ESH) issues in the next generation semiconductor manufacturing.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2001