Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T18:46:13.571Z Has data issue: false hasContentIssue false

Enthalpies of Formation of Rare Earth and Actinide(III) Hydroxides; their Acid-Base Relationships and Estimation of their Thermodynamic Properties

Published online by Cambridge University Press:  25 February 2011

Lester R. Morss
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A
Clayton W. Williams
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A
Get access

Abstract

This paper reviews the literature on rare earth(III) and actinide(III) hydroxide thermodynamics, in particular the determination of their enthalpies of formation at 25 ºC. The hydroxide unit-cell volumes, lanthanide/actinide ion sizes, and solid-solution stability trends have been correlated with a generalized acid-base strength model for oxides to estimate properties for heterogeneous equilibria that are relevant to nuclear waste modeling and to characterization of potential actinide environmental interactions. Enthalpies of formation and solubility-product constants of actinide(III) hydroxidesare estimated

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baes, C. F. Jr., and Mesmer, R. E., The Hydrolysis of Cations (Wiley-Interscience, New York, 1976). (The present paper follows the terminology and notation of this classical work.)Google Scholar
2. Wartenberg, H. von, Z. anorg. allg. Chem. 299, 227 (1959).Google Scholar
3. Cordfunke, E. H. P, Konings, R. J. M., and Ouweltjes, W., J. Chem. Thermodynamics 22, 449 (1990).Google Scholar
4. Morss, L. R., Haar, C. M., and Mroczkowski, S., J. Chem. Thermodynamics 21, 1079 (1989).Google Scholar
5. Chirico, R. D. and Westrum, E. F. Jr., J. Chem. Thermodynamics 12, 71 (1980); ibid. 311.Google Scholar
6. Felmy, A. R., Rai, D., Schramke, J. A., and Ryan, J. L., Radiochimica Acta 48, 29 (1989).Google Scholar
7. Silva, R. J., Lawrence Berkeley Laboratory Reports LBL-15055 (1982) and LBL-16690 (1983).Google Scholar
8. Stadler, S. and Kim, J. I., Radiochimica Acta 44/45, 39 (1988).Google Scholar
9. Ryan, J. L. and Rai, D., Inorg. Chem. 26, 4140 (1987).Google Scholar
10. Rai, D., Felmy, A. R., and Ryan, J. L., Inorg. Chem. 22, 260 (1990).Google Scholar
11. Kim, J. I. and Kanellakopulos, B., Radiochimica Acta 48, 145 (1989).Google Scholar
12. Morss, L. R., in Standard Potentials in Aqueous Solution, edited by Bard, A. J., Parsons, R., and Jordan, J. (Marcel Dekker, New York, 1985).Google Scholar
13. Morss, L. R., chapter 17 in The Chemistry of the Actinide Elements, edited by Katz, J. J., Seaborg, G. T., and Morss, L. R. (Chapman & Hall, 1986).Google Scholar
14. Smith, D. W., J. Chem. Education 64, 480(1987).Google Scholar
15. Morss, L. R., Fuger, J., Goffart, J., and Edelstein, N., J. Less-Common Metals 127, 251(1987).Google Scholar
16. Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L., J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982).Google Scholar
17. Flotow, H. E. and Tetenbaum, M., J. Chem. Phys. 74, 5269 (1981).Google Scholar
18. S°[Pu(OH)3] was estimated by difference as S°[Nd(OH)3] + S°(PuO1.5) - S°(NdO1.5) = 129.9 + 81.5 - 79.8 = 131.6 J K−1 mol−l. This estimation follows Latimer, W. M., Oxidation Potentials, Prentice-Hall, 1952, taking into account cation mass effect and cation magnetic entropy, assuming the magnetic entropy contributions of PUO1.5 and Pu(OH)3 are the same. However, the experimental entropies were measured on different crystalline forms of oxide: NdO1.5, monoclinic; PuO1.5, hexagonal. Oxide structural entropy differences were not considered.Google Scholar
19. Ahrland, S., chapter 21 in The Chemistry of the Actinide Elements, edited by Katz, J. J., Seaborg, G. T., and Morss, L. R. (Chapman & Hall, 1986).Google Scholar