Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:55:38.404Z Has data issue: false hasContentIssue false

Enhanced Diffusion of Dopants in Vacancy Supersaturation Produced by MeV Implantation

Published online by Cambridge University Press:  15 February 2011

V. C. Venezia
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Department of Physics, University of North Texas, Denton, Texas 76201, USA
T. E. Haynes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
A. Agarwal
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Bell Laboratory, Lucent Technologies, Murray Hill, New Jersey 07974, USA
H. -J. Gossmann
Affiliation:
Bell Laboratory, Lucent Technologies, Murray Hill, New Jersey 07974, USA
D. J. Eaglesham
Affiliation:
Bell Laboratory, Lucent Technologies, Murray Hill, New Jersey 07974, USA
Get access

Abstract

The diffusion of Sb and B markers has been studied in vacancy supersaturations produced by MeV Si implantation in float zone (FZ) silicon and bonded etch-back silicon-on-insulator (BESOI) substrates. MeV Si implantation produces a vacancy supersaturated near-surface region and an interstitial-rich region at the projected ion range. Transient enhanced diffusion (TED) of Sb in the near surface layer was observed as a result of a 2 MeV Si+, 1×1016/cm2, implant. A 4× larger TED of Sb was observed in BESOI than in FZ silicon, demonstrating that the vacancy supersaturation persists longer in BESOI than in FZ. B markers in samples with MeV Si implant showed a factor of 10× smaller diffusion relative to markers without the MeV Si+ implant. This data demonstrates that a 2 MeV Si+ implant injects vacancies into the near surface region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Eaglesham, D. J., Stolk, P. A., Gossmann, H. -J., Haynes, T. E., and Poate, J. M., Nucl. Instrum. Meth. Phys. Res. B 106, 191 (1995).Google Scholar
2 Eaglesham, D. J., Stolk, P. A., Gossmann, H. -J., and Poate, J. M., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
3 Mogi, T. K., Thompson, Michael O., Gossmann, H. -J., Poate, J. M., and Luftman, H. S., Appl. Phys. Lett. 69 (9), 1273 (1996).Google Scholar
4 Nielsen, B., Holland, O. W., Lueng, T. C., and Lynn, K. G., J. Appl. Phys. 74, 1636 (1993).Google Scholar
5 Holland, O. W., Nielsen, B., and Zhou, D. S., J. Electron. Matter. 25, 99 (1996)Google Scholar
6 Eaglesham, D. J., Haynes, T. E., Gossmann, H. -J., Jacobson, D. C., Stolk, P. A., and Poate, J. M., submitted to Appl. Phys. Lett.Google Scholar
7 Raineri, V., Schreutekamp, R. J., Saris, F. W., Janssen, K. T. F., and Kaim, R. E., Appl. Phys. Lett. 58 (9), 922 (1991).Google Scholar
8 Kyllesbech Larsen, K., Privitera, V., Coffa, S., Priolo, F., Spinella, C., Saggio, M., and Compisano, S. U., Nucl. Instrum. Meth. Phys. Res. B 112, 139 (1996).Google Scholar
9 Fair, R. B., Manda, M. L., and Wortman, J. J., J. Mater. Res. 1, 705 (1986).Google Scholar
10 Celler, G. K. and Trimble, L. E., Appl. Phys. Lett. 54 (15), 1427 (1989)Google Scholar
11 Nielsen, B., unpublished data.Google Scholar
12 Jones, K. S., Elliman, R. G., Petravac, M. M., and Kringhoj, P., Appl. Phys. Lett. 68 (22), 3111 (1996).Google Scholar