Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:14:20.960Z Has data issue: false hasContentIssue false

EMCD: Magnetic Chiral Dichroism in the Electron Microscope

Published online by Cambridge University Press:  01 February 2011

Stefano Rubino
Affiliation:
[email protected], Vienna University of Technology, Institute for Solid State Physics, Wiedner Hauptstrasse 8-10/138, Vienna, A-1040, Austria
Peter Schattschneider
Affiliation:
[email protected], Vienna University of Technology, Institute for Solid State Physics, Wiedner Hauptstrasse 8-10/138, Vienna, A-1040, Austria
Michael Stöger-Pollach
Affiliation:
[email protected], Vienna University of Technology, Service centre for TEM, Wiedner Hauptstrasse 8-10/138, Vienna, A-1040, Austria
Cécile Hébert
Affiliation:
[email protected], EPFL, SB-CIME station 12, Lausanne, N/A, Switzerland
Ján Rusz
Affiliation:
[email protected], Uppsala University, Department of Physics, Box 530, Uppsala, S-751 21, Sweden
Lionel Calmels
Affiliation:
[email protected], CEMES-CNRS, Nanomaterieaux group, Toulouse, N/A, France
Benedicte Warot-Fonrose
Affiliation:
[email protected], CEMES-CNRS, Nanomaterieaux group, Toulouse, N/A, France
Florent Houdellier
Affiliation:
[email protected], CEMES-CNRS, Nanomaterieaux group, Toulouse, N/A, France
Virginie Serin
Affiliation:
[email protected], CEMES-CNRS, Nanomaterieaux group, Toulouse, N/A, France
Pavel Novàk
Affiliation:
[email protected], Academy of Sciences of the Czech Republic, Institute of Physics, Na Slovance 2, Prague, CZ-18221, Czech Republic
Get access

Abstract

A new technique called Energy-loss Magnetic Chiral Dichroism (EMCD) has recently been developed [1] to measure Magnetic Circular Dichroism (MCD) in the Transmission Electron Microscope (TEM) with a spatial resolution of 10 nm. This novel technique is the TEM counterpart of X-ray Magnetic Circular Dichroism (XMCD), which is widely used for the characterization of magnetic materials with synchrotron radiation.

In this paper we describe several experimental methods which can be used to measure the EMCD signal [1-5] and give a review of the recent improvements of this new investigation tool. The dependence of the EMCD on several experimental conditions (such as thickness, relative orientation of beam and sample, collection and convergence angle) is investigated in the transition metals Iron, Cobalt and Nickel. Different scattering geometries are illustrated; their advantages and disadvantages are detailed, together with current limitations. The next realistic perspectives of this technique will consist in measuring atomic specific magnetic moments, using suitable spin and orbital sum rules [4,6], with a resolution down to 2-3 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schattschneider, P. et al. : Nature 441 (2006) 486488;10.1038/nature04778Google Scholar
2. Hébert, C. et al. : Ultramicroscopy, in print (doi 10:1016/j.ultramic.2007.07.011);Google Scholar
3. Warot-Fonrose, B. et al. : Ultramicroscopy, in print (doi 10:1016/j.ultramic.2007.05.013);Google Scholar
4. Calmels, L. et al. : Phys. Rew. B 76 (2007) 060409.10.1103/PhysRevB.76.060409Google Scholar
5. Aken, P. van et al. : Microsc. Microanal. 13(3) (2007) 426427;Google Scholar
6. Rusz, J. et al. : Phys. Rew. B 76 (2007) 060408;10.1103/PhysRevB.76.060408Google Scholar
7. Kim, D. H et al. : J. Appl. Phys. 99 (2006) 08H303;10.1063/1.2208308Google Scholar
8. Schütz, G. et al. : Phys. Rew. Lett. 58 (1987) 737740;10.1103/PhysRevLett.58.737Google Scholar
9. Thole, B. T et al. : Phys. Rew. Lett. 68 (1992) 1943;10.1103/PhysRevLett.68.1943Google Scholar
10. Chen, C. T et al. : Phys. Rew. Lett. 75 (1995) 152155;10.1103/PhysRevLett.75.152Google Scholar
11. Hitchcock, A. P et al. : Jpn. J. Appl. Phys. 32(2) (1993) 176181;10.7567/JJAPS.32S2.176Google Scholar
12. Aken, P. van, Lauterbach, S.: Phys. Chem. Miner. 30 (2003) 469477;10.1007/s00269-003-0340-4Google Scholar
13. Schütz, G. et al. : Z. Phys. B 75 (1989) 495;10.1007/BF01312528Google Scholar
14. Lovesey, S. W and Collins, S. P, X-ray scattering and absorption by magnetic materials, ed. Chikawa, J., Helliwell, J. R and Lovesey, S. W (Clarendon Press, Oxford, 1996) pp. 120131;Google Scholar
15. Kohl, H. and Rose, H.: Adv. Electron. Electron Phys. 65 (1985) 173;10.1016/S0065-2539(08)60878-1Google Scholar
16. Rusz, J., Rubino, S. and Schattschneider, P.: Phys. Rew. B 75 (2007) 214425;10.1103/PhysRevB.75.214425Google Scholar
17. Metherell, A. J. F. in Electron microscopy in material science, ed. Ruedl, E. and Valdrè, U. (CEC, Luxembourg, 1975) pp 397552;Google Scholar
18. Kainuma, Y.: Acta Crystallog. 8 (1955) 247;10.1107/S0365110X55000832Google Scholar
19. Morniroli, J. P et al. : Ultramicroscopy, in print (doi 10:1016/j.ultramic.2007.03.016);Google Scholar
20. Schattschneider, P. et al. : Ultramicroscopy, in print (doi 10:1016/j.ultramic.2007.07.002);Google Scholar
1. Verbeeck, J. et al. : Ultramicroscopy, submitted;Google Scholar
22. Hejtmanek, J. et al. : Phys. Rew. B 66 (2002) 014426.10.1103/PhysRevB.66.014426Google Scholar