Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T05:27:20.575Z Has data issue: false hasContentIssue false

Electronic Transport in Organic Ferroelectric Gate Field-Effect Transistors with ZnO Channel

Published online by Cambridge University Press:  17 May 2012

Hiroaki Yamada
Affiliation:
Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
Takeshi Yoshimura
Affiliation:
Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
Norifumi Fujimura
Affiliation:
Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
Get access

Abstract

The electronic transport properties of the organic ferroelectric gate field-effect transistors (FeFETs) with the ZnO channel were investigated. The FeFETs with the channel thickness below 100 nm show nonvolatile operation and the on/off ratio of 105. The field-effect mobility decreased with decreasing the channel thickness. From the Hall-effect measurement, it was found that the Hall mobility increases and the carrier concentration decreases after the deposition of the organic ferroelectric gate. From these results, the effect of the ferroelectric polarization on the electronic transport in the FeFETs was discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sakai, S., Ilangovan, R., and Takahashi, M., Jpn. J. Appl. Phys. 43, 7876 (2004).Google Scholar
2. Fujisaki, S., Ishiwara, H., and Fujisaki, Y., Appl. Phys. Lett. 90, 162902 (2007).Google Scholar
3. Miyasako, T., Senoo, M., and Tokumitsu, E., Appl. Phys. Lett. 86, 162902 (2005).Google Scholar
4. Yoon, S. M., Yang, S., Ko Park, S. H., Jung, S. W., Byun, C. W., Cho, D. H., Kang, S. Y., Hwang, C. S., and Yu, B. G., J. Phys. D 42, 245101 (2009).Google Scholar
5. Kaneko, Y., Tanaka, H., and Kato, Y.: Jpn. J. Appl. Phys. 48, 09KA19 (2009).Google Scholar
6. Fukushima, T., Yoshimura, T., Masuko, K., Maeda, K., Ashida, A., and Fujimura, N., Jpn. J. Appl. Phys. 47, 8874 (2008).Google Scholar
7. Fukushima, T., Maeda, K., Yoshimura, T., Ashida, A., and Fujimura, N., Jpn. J. Appl. Phys. 50, 04DD16 (2011).Google Scholar
8. Kodama, H., Takahashi, Y., and Furukawa, T., Jpn. J. Appl. Phys. 38, 3589 (1999).Google Scholar
9. Sakamoto, S., Oshio, T., Ashida, A., Yoshimura, T., and Fujimura, N.: Appl. Surf. Sci. 254, 6248 (2008).Google Scholar
10. Masuko, K., Ashida, A., Yoshimura, T., and Fujimura, N.: J. Appl. Phys. 103, 043714 (2008).Google Scholar
11. Van de Walle, Chris G., Phys. Rev. Lett. 85, 1102 (2000).Google Scholar
12. Wang, Y., Meyer, B., Yin, X., Kunat, M., Langenberg, D., Traeger, F., Birkner, A., and Wöll, Ch., Phys. Rev. Lett. 95, 266104 (2005).Google Scholar
13. Look, D.C., Mosbacker, H.L., Strzhemechny, Y. M., and Brillson, L. J., Superlattices Microstruct. 38, 406 (2005).Google Scholar
14. Sze, S. M., and Ng, Kwok K., Physics of Semiconductor Devices, 3rd ed. (Wiley, New York, 2007) p. 308.Google Scholar
15. Look, D. C., Electrical Characterization of GaAs Materials and Devices(Wiley, New York, 1989) p. 54.Google Scholar