Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-04T21:55:52.307Z Has data issue: false hasContentIssue false

Electronic structure theory of Pu-Am and Pu-Ce alloys, and thin δ-Pu films

Published online by Cambridge University Press:  01 February 2011

Jindrich Kolorenc
Affiliation:
[email protected], Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
Alexander Shick
Affiliation:
[email protected], Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
Ladislav Havela
Affiliation:
[email protected], Charles University, Department of Condensed Matter Physics, Praha, Czech Republic
Alexander Lichtenstein
Affiliation:
[email protected], University of Hamburg, Hamburg, Germany
Get access

Abstract

We study effects of electron correlations on the electronic structure and spectra of Pu, Am and their alloys. We make use of the LDA + Hubbard-I approximation being implemented in the full-potential LAPW basis and including self-consistency over the charge density. We demonstrate that this approximation correctly captures trends observed in the experimental photoemission spectra of plutonium and its compounds: insensitivity of the f electron spectral features to alloying with another element and enhancement of f electron localization in thin films compared to the bulk material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Moore, K. and Laan, G. van der, Rev. Mod. Phys. 81 235 (2009).Google Scholar
2 Shick, A. B. Kolorenc, J. Lichtenstein, A. I. and Havela, L. Phys. Rev. B80, 085106 (2009).Google Scholar
3 Georges, A. Kotliar, G. Krauth, W. and Rozenberg, M. Rev. Mod. Phys. 81 235 (1996).Google Scholar
4 Shick, A. B. A. I. Liechtenstein and Pickett, W. E. Phys. Rev. B60 10763 (1999).Google Scholar
5 Hubbard, J. Proc. R. Soc. London Ser. A276, 238 (1963).Google Scholar
6 Lichtenstein, A. I. and Katsnelson, M. I. Phys. Rev. B57, 6884 (1998).Google Scholar
7 Shick, A. Kolorenc, J. Havela, L. Drchal, V. and Gouder, T. Europhys. Lett. 17, 17003 (2005).Google Scholar
8 Svane, A. Solid State Commun. 140, 364 (2006).Google Scholar
9 Liu, L. Z. Allen, J. W. Gunnarsson, O. Christensen, N. E. and Andersen, O. K. Phys. Rev. B45, 8934 (1992).Google Scholar
10 Shick, A. Havela, L. Kolorenc, J. Drchal, V. Gouder, T. and Oppeneer, P. M. Phys. Rev. B73, 104415 (2006).Google Scholar
11 Pourovskii, L. V. Kotliar, G. Katsnelson, M. I. and Lichtenstein, A. I. Phys. Rev. B75, 235107 (2007).Google Scholar
12 Cox, L. E. Eriksson, O. and Cooper, B. R. Phys. Rev. B46, 13571 (1992).Google Scholar
13 Gouder, T. Havela, L. Wastin, F. and Rebizant, J. Europhys. Lett. 55, 705 (2001).Google Scholar
14 Havela, L. Gouder, T. Wastin, F. and Rebizant, J. Phys. Rev. B65, 235118 (2002).Google Scholar
15 Gouder, T. Oppeneer, P. M. Huber, F. Wastin, F. and Rebizant, J. Phys. Rev. B72, 115122 (2005).Google Scholar