Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T12:38:52.475Z Has data issue: false hasContentIssue false

Electromigration Reliability in Nanoscale Cu Interconnects

Published online by Cambridge University Press:  01 February 2011

C.-K. Hu
Affiliation:
[email protected], IBM, Si Department, IBM T, J, Watson Research Center, P.O. Box 218, Yorktown Heights, NY, 10598, United States, 9149452378, 9149452141
L. M. Gignac
Affiliation:
[email protected], IBM T.J. Watson Research Center, Yortown Heights, NY, 10598, United States
B. C. Baker-O'Neal
Affiliation:
[email protected], IBM T.J. Watson Research Center, Yortown Heights, NY, 10598, United States
G. Bonilla
Affiliation:
[email protected], IBM T.J. Watson Research Center, Yortown Heights, NY, 10598, United States
E. G. Liniger
Affiliation:
[email protected], IBM T.J. Watson Research Center, Yortown Heights, NY, 10598, United States
P. L. Flaitz
Affiliation:
[email protected], IBM Microelectronics Division, Hopewell Junction, NY, 12533, United States
Get access

Abstract

Electromigration behavior in Cu damascene wires was studied for various Cu grain struc-tures. The grain size was modulated by Cu linewidth and thickness, and by adjusting the wafer annealing process step after Cu electroplating and before Cu chemical mechanical polishing. A larger variation of Cu grain size between the samples was achieved on CMOS 65 nm node tech-nology than previous nodes which was due to the finer line width and thinner metal thickness. The Cu lifetime and mass flow in samples with bamboo, near bamboo, bamboo-polycrystalline mixture, and polycrystalline grain structures were measured. The effects of a Cu(2.5 wt.% Ti) alloy seed, Cu surface pre-clean, and selective electroless CoWP deposition techniques on Cu electromigration were also observed and a significantly improved Cu lifetime was found. The electromigration activation energies for Cu in Cu(Ti) alloy, along Cu/amorphous a-SiCxNyHz in-terface and grain boundary were found to be 1.3, 0.95 and 0.79 ± 0.05 eV, respectively. In addition the Cu line size effect on the Cu conductivity for Cu area less than 4×104 nm2 was found to be a linear function of the Cu line area.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rosenberg, R., Edelstein, D., Hu, C.-K., and Rodbell, K. P., Annul Rev. Mater. Sci., 30, 229 (2000).Google Scholar
2. Ogawa, E.T., Lee, K.-D., Blaschke, V.A., and Ho, P.S., IEEE Transactions on Reliability 51, (2002) p. 403.Google Scholar
3. Hu, C.-K., Gignac, L., and Rosenberg, R., Microelectronics Reliability 46, 213 (2006)10.1016/j.microrel.2005.05.015Google Scholar
4. Edelstein, D., Heidenreich, J., Goldblatt, R. D., Cote, W., Uzoh, C., Lustig, N., Roper, P., McDevitt, T., Mostiff, W., Simon, A., Stamper, A., Dukovic, J., Wachnik, R., Rathore, H., Luce, S., and Slattery, J., Tech. Digest IEEE International Electron Devices Mtg. (Piscataway, NJ, 1997), pp.773 Google Scholar
5. Zschech, E., Meyer, M.A., Zienert, I., Langer, E., Geisler, H., Preusse, A., Huebler, P., Proc. of the 12th International Symp. on the Physical and Failure Analysis of Integrated Circuits, (2005) pp. 85 Google Scholar
6. Hu, C.-K., Gignac, L., Baker, B., Liniger, E., Yu, R., and Flaitz, P., Proc. of IEEE International Interconnect Technolgy Conf. (2007) Section 6.1Google Scholar
7. Steinhogl, W., Schindler, G., Steinlesberger, G., Traving, M., M, Engelhardt, J. Appl. Phys. 97, 023706 (2005).Google Scholar
8. Hinode, K., Hanaoka, Y., Tahed, K.-i., Konda, S., Jpn. J. Appl. Phys. 40, L1097 (2001).Google Scholar
9. Zhang, W., Brongersma, S.H., Li, Z., Li, D., Richard, O. and Maex, K., J. Appl. Phys. 101, 063703 (2007).Google Scholar
10. Kim, C.-U., Park, J., Michael, N., Gillespie, P., and Augur, R., J. Electron. Mater. 32, 982 (2003).10.1007/s11664-003-0079-1Google Scholar
11. Bessling, W.F.A., Broekaart, M., Arnal, V., and Torres, J., Microelectr. Eng. 76, 167 (2004).Google Scholar
12. Gignac, L. M., Hu, C.-K., Herbst, B. W., Baker-O'Neal, B. C., Proc. of Advanced Metallization Conf. (Mat. Res. Soc., Warrendale, PA 2007) in pressGoogle Scholar
13. Hu, C.-K., Gignac, L., Baker, B., Liniger, E., Yu, R., Flaitz, P., Stamper, A. K., 9th International Workshop on Stress-Induced Phenomena in Metallization, AIP Conf. Proc. 945 (2007) p.27 Google Scholar
14. Kittel, C., Introduction to Solid State Physics, 4th Ed., New York: John Willey & Sons, Inc, 1971, p. 259.Google Scholar
15. Edelstein, D., Heidenreich, J., Goldblatt, R., Cote, W., Uzoh, C., Lustig, N., Roper, P., McDevitt, T., Motsiff, W., Simon, A., Dukovic, J., Wachnik, R., Rathore, H., Schulz, R., Su, L., Luce, S., Slattery, J., IEEE Proc., IEDM Technical Digest, (1997) pp. 773 Google Scholar
16. Park, C.W., Vook, R.W. Thin Solid Films 226, 238 (1993)Google Scholar
17. Hu, C-K, Lee, K.Y., Lee, K.L., Crabal, C., Colgan, E., Stanis, C., J. Electrochem. Soc., 143, 1001 (1996)Google Scholar
18. Yokogawa, S., and Tsuchiya, H., 9th International Workshop on Stress-Induced Phenomena in Metallization, AIP Conf. Proc. 945 (2007) p.82 10.1063/1.2815786Google Scholar
19. Zschech, E., Meyer, M. A., Langer, E., Proc. Mat. Res. Soc. Spring. 812 (2004), pp. 361 Google Scholar
20. Hu, C.-K., Gignac, L., Rosenberg, R., Diffusion Processes in Advanced Technical Materials, Gupta, D. editor, Norwich, NY: Willian Andrew, Inc., 2005, Chap.9Google Scholar
21. Butrymowicz, D. B., Manning, J. R., and Reed, M. E., J. Phys. Chem. Reference Data, 2, 643(1977).Google Scholar
22. Hu, C.-K., Gignac, L., Rosenberg, R., “Electromigration in Cu thin film”, in Diffusion Processes in Advanced Technical Materials,” Gupta, D. editor, (William Andrew, Inc., Norwich, NY, 2005) Chap.9.Google Scholar
23. Hu, C.-K., Proc. of Mat. Res. Soc. 511 (1998) pp.305.Google Scholar
24. Surholt, T. and Herzig, C., Acta Mater. 45, 3817(1997).10.1016/S1359-6454(97)00037-2Google Scholar
25. Stamper, A. K., Baks, H., Cooney, E., Gignac, L., Gill, J., Hu, C.-K., Kane, T., Liniger, E., Wang, Y.-Y., and Wynne, J., Proc. Advanced Metallization Conf. (2005) pp.727 Google Scholar
26. Tonegawa, T., Hiroi, M., Motoyama, K., Fujii, H. Miyamoto, H. Proc. of IEEE International Interconnect Technol. Conf. (2003) pp. 216 Google Scholar
27. Wang, C., Lopatin, S., Marathe, A., Buynoski, M., Huang, R., Erb, D., Proc. of International Interconnect Technol. Conf. (2001) pp. 86.Google Scholar
28. Ryan, E. T., Martin, J., Bonilla, G., Molis, S., Spooner, T., Widodo, J., Kim, J.-H., Liniger, E., Grill, A., and Hu, C.-K., J. Electrochem. Soc. 154, H604 (2007)Google Scholar
29. Hu, C.-K., Gignac, L. M., Rosenberg, R., Herbst, B., Smith, S., Rubino, J., Canaperi, D., Chen, S. T., Seo, S. C., and Restaino, D., Appl. Phys. Lett. 84, 4986 (2004).10.1063/1.1762991Google Scholar
30. Blech, A. J. Appl. Phys. 47, 1203 (1976).Google Scholar