Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:36:56.312Z Has data issue: false hasContentIssue false

Electrical Characterization of Al2O3 - SiO2 Mos Structures

Published online by Cambridge University Press:  10 February 2011

L-Å Ragnarsson
Affiliation:
Microtechnology Centre at Chalmers and Solid State Electronics Laboratory, Department of Microelectronics, Chalmers University of Technology, SE-412 96 Göteborg, SWEDEN E-mail: [email protected]
E. Aderstedt
Affiliation:
Microtechnology Centre at Chalmers and Solid State Electronics Laboratory, Department of Microelectronics, Chalmers University of Technology, SE-412 96 Göteborg, SWEDEN E-mail: [email protected]
P. Lundgren
Affiliation:
Microtechnology Centre at Chalmers and Solid State Electronics Laboratory, Department of Microelectronics, Chalmers University of Technology, SE-412 96 Göteborg, SWEDEN E-mail: [email protected]
Get access

Abstract

A comparative capacitance voltage method is used to investigate the equivalent thickness reduction during post metallization annealing of thermally grown ultrathin (∼15-27 Å) oxides. It is found that a double layered dielectric consisting of a thin Al2O3—SiO2 sandwich is appropriate to describe both the increased capacitance and the nearly unaltered current after anneal. It is further shown that the impact of initial thickness and method of growth — in a conventional furnace or by rapid thermal oxidation — on the equivalent thickness reduction is negligible.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lucovsky, G., Advanced Materials for Optics and Electronics, 6, 55 (1996).10.1002/(SICI)1099-0712(199603)6:2<55::AID-AMO226>3.0.CO;2-J3.0.CO;2-J>Google Scholar
2 Semiconductor Industry Association, San Jose, CA., The National Technology Roadmap for Semiconductors (1997).Google Scholar
3 Yang, H. Y., Niimi, H., and Lucovsky, G., J. Appl. Phys, 83, 2327 (1998).Google Scholar
4 Alers, G. B., Werder, D. J., Chabal, Y., Lu, H. C., Gusev, E. P., Garfunkel, E., Gustafsson, T., and Urdahl, R. S., Appl. Phys. Lett., 73, 1517 (1998).10.1063/1.122191Google Scholar
5 Roy, P. K. and Kizilyalli, I. C., Appl. Phys. Lett., 72, 2835 (1998).10.1063/1.121473Google Scholar
6 Hecht, M. H., Vasquez, R. P., Grunthaner, F. J., Zamani, N., and Maserjian, J., J. Appl. Phys, 57, 5256 (1985).10.1063/1.335266Google Scholar
7 Ragnarsson, L.-Å., Aderstedt, E., and Lundgren, P., J. Electrochem. Soc. (in press).Google Scholar
8 Zafar, S., Conrad, K. A., Liu, Q., Irene, E. A., Hames, G., Kuehn, R., and Wortman, J. J., Appl. Phys. Lett., 67, 1031 (1995).10.1063/1.114720Google Scholar
9 Datta, S., Quantum Phenomena, edited by Pierret, R. F. and Neudebeck, G. W. (Addison- Wesley, 1989).Google Scholar
10 Stratton, R., J. Phys. Chem. Solids., 23, 11771190 (1962).10.1016/0022-3697(62)90165-8Google Scholar
11 Berglund, C. N., IEEE Trans. Electron. Dev., ED–13, 701 (1966).10.1109/T-ED.1966.15827Google Scholar
12 Salama, C. A. T., J. Electrochem. Soc., 117, 913 (1970).10.1149/1.2407682Google Scholar
13 Schmidlin, F. W., J. Appl. Phys, 37, 2823 (1965).10.1063/1.1782131Google Scholar
14 Chang, L. L., Stiles, P. J., and Esaki, L., J. Appl. Phys, 38, 4440 (1967).10.1063/1.1709144Google Scholar
15 Anandan, C., Appl. Surf. Sci., 89, 57 (1995).10.1016/0169-4332(95)00008-9Google Scholar