Published online by Cambridge University Press: 01 February 2011
The electrical and material characterization of Ti(C)N deposited by metal organic chemical vapor deposition (MOCVD) technique, as metal gate electrode for advanced CMOS technology is investigated. The effects of the plasma treatment, post anneal treatment and the thickness variation of the Ti(C)N film on the flat band voltage (VFB) and effective work function (WF) of the Poly-Si/Ti(C)N/SiO2 Poly-Si/Ti(C)N/SiO2 gate stack s are reported. We found that both the in-situ plasma treatment and post anneal treatment help in reducing the carbon content (organic) in the film making it more metallic compared to the as-deposited films. However, the post anneal treatment was found to be a better option for getting rid of hydrocarbons as compared to plasma treatment from the gate dielectric integrity point of view. The thickness variation of post annealed Ti(C)N film ranged from 2.5 nm to 10 nm lead to WF shift of upto ~350 mV for both Poly-Si/Ti(C)N/SiO2 and Poly-Si/Ti(C)N/HfO2 gate stacks.