Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-03T19:13:29.566Z Has data issue: false hasContentIssue false

Effects of Different Fluorine Dopants on the Properties of the Tin Oxide Window Layer and CdTe/CdS Solar Cell

Published online by Cambridge University Press:  01 February 2011

Xiaonan Li
Affiliation:
[email protected], NREL, 5200, 1617, Cole Blvd, Golden, CO, 80401, United States, 303-384-6428, 303-384-7600
Mailasu Bai
Affiliation:
[email protected], Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, United States
Joel Pankow
Affiliation:
[email protected], National Renewable Energy Laboratory, 5200, 1617 Cole Blvd., Golden, CO, 80401, United States
Sally E. Asher
Affiliation:
[email protected], National Renewable Energy Laboratory, 5200, 1617 Cole Blvd., Golden, CO, 80401, United States
Helio Moutinho R. Moutinho
Affiliation:
[email protected], National Renewable Energy Laboratory, 5200, 1617 Cole Blvd., Golden, CO, 80401, United States
Tim Gessert
Affiliation:
[email protected], National Renewable Energy Laboratory, 5200, 1617 Cole Blvd., Golden, CO, 80401, United States
Get access

Abstract

Conductive tin-oxide (SnO2) film is doped by group V or VII elements. Of all possible dopants, fluorine provides n-type SnO2 with the best electronic and optical properties. However, the commonly used fluorine dopant, bromotrifluoromethane (CBrF3), is a greenhouse gas. Thus, an alternative fluorine source is needed. In this work, we compared CIF3 as a fluorine dopant to CBrF3. With CBrF3 dopant, optimized carrier concentration and electron mobility values can reach to mid 1020 cm-3 and over 40 cm2/V-s, respectively. After carrier concentration saturates, the electronic mobility continues to improve with an increase of CBrF3 dopant concentration. As a comparison, to achieve similar carrier concentration, far less CIF3 dopant is required. However, the electron mobility is lower (<30 cm2/V-s) and does not improve with an increase of dopant concentration. The low electron mobility increases the optical absorption, especially of long wavelengthes. Considering CdTe/CdS solar cell efficiency, the device with a CIF3-doped SnO2 window layer provides the lower photocurrent.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Haacke, G., Ann. Rev. Mater. Sci. 7, 73 (1977).Google Scholar
2. Chopra, K.L., Major, S., and Pandya, D.K., Thin Solid Films 102, 1 (1983).Google Scholar
3. Patil, P.S., Mater. Chem. Phys. 59, 185 (1999).Google Scholar
4. Gordon, R.G. and Proscia, J., Solar Energy Materials 18, 263 (1989).Google Scholar
5. Li, X., Ribelin, R., Mahathongdy, Y., Albin, D., Dhere, R., Rose, D., Asher, S., Moutinho, H., and Sheldon, P., AIP Conference Proceedings 462, pp. 230235, (1999).Google Scholar
6. Dhere, R., Moutinho, H.R., Asher, S., Young, D., Li, X., Ribelin, R., and Gessert, T.A., AIP Conference Proceedings 462, (1999) pp. 242247, (1999).Google Scholar
7. Ferekides, C.S., Marinskiy, D., Viswanathan, V., Tetali, B., Palekis, V., Selvaraj, P., and Morel, D.L., Thin Solid Films 361-362, 520, (2000).Google Scholar
8. Thangaraju, B., Thin Solid Films 402, 71 (2002).Google Scholar
9. Shanthi, E., Dutta, V., Banerjee, A., and Chopra, K.L., J. Appl. Phys. 51, 6243 (1980).Google Scholar
10. Vishwakarma, S.R., Upadhyay, J.P., and Prasad, H.C., Thin Solid Films 176, 99 (1989).Google Scholar
11. Proscia, J. and Goldon, R.G., Thin Solid Films 214, 175 (1992).Google Scholar
12. Chopra, K.L, Major, S., and Pandya, D.K., Thin Solid Films 102, 1 (1983).Google Scholar
13. Shanthi, E., Banerjee, A., and Chopra, K.L., Thin Solid Films 88, 93 (1982).Google Scholar
14. Simonis, F., Deij, M. van der, and Hoogendoorn, C.J., Sol. Energy Mater. 1, 221 (1979).Google Scholar
15. Henson, S., Smigielski, K., Hanak, J., Borgeson, F., Meyers, P., and McMaster, A., NCPV Program Review Meeting; Denver, Colorado, 24-26 March 2003, pp. 595596.Google Scholar
16. Li, X., Gessert, T., DeHart, C., Barnes, T., Moutinho, H., Yan, Y., Young, D., Young, M., Perkins, J., and Coutts, T., NCPV Program Review Meeting; Lakewood, Colorado, 14-17 October 2001, pp. 255258.Google Scholar
17. Balasubramanian, U., Masters Thesis: “Indium Oxide as a High Resistivity Buffer Layer for CdTe/CdS Thin Film Solar Cells,” University of South Florida, 53, (2004).Google Scholar
18. Burstein, E., Phys. Rev. 93, 632 (1954).Google Scholar
19. Moss, T.S., Proc. Phys. Soc. (London) B76, 775 (1954).Google Scholar
20. Pankove, J.I., Optical Processes in Semiconductors, Dover Publication, Inc., New York, p.75, (1971).Google Scholar
21. Kerr, L.L., Li, X., Anderson, T.J., Coutts, T.J., Crisalle, O.D., and S.Li, Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference, Osaka, Japan, May 11-18, 2003, Vol. 1, pp. 303306.Google Scholar