Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-10-04T23:56:58.416Z Has data issue: false hasContentIssue false

The Effect of Thermal History On Interconnect Reliability

Published online by Cambridge University Press:  21 February 2011

C.V. Thompson*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

The reliability of interconnects is strongly affected by their thermal history, including the deposition temperature, the temperature at which patterned films are passivated, and the temperature and cooling rates of the final packaging processes. The thermal history affects the stress, the grain structure, and the distribution of alloy additions, such as Cu. All of these affect the reliability of interconnects, especially as it is limited by electromigration. The postpatterning thermal history is especially important. For example, it is post-patterning annealing which leads to the evolution of electromigration resistant bamboo-microstructures. In Al-Cu alloy interconnects, pre- and post-patterning anneals can also affect the distribution of Cu in solution and in precipitates. This too can affect interconnect reliability. Experiments and modeling concerned with these effects of thermal history will be reviewed and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Thin Films-Stresses and Mechanical Properties II, edited by Townsend, P.H., Li, C.-Y., Sanchez, J., and Weihs, T.P. (Mater. Res. Soc. Symp. Proc. to be published, Pittsburgh, PA), 1993.Google Scholar
2. Gardner, P.S. and Flinn, P.A., IEEE Trans. Electron. Devices 35, 2160 (1988).Google Scholar
3. Nix, W.D., Metall. Trans. 20A, 2217 (1989).Google Scholar
4. Cho, J. and Thompson, C.V., Appl. Phys. Letts. 54, 2577 (1989).Google Scholar
5. Cho, J. and Thompson, C.V., J. Electron. Mat. 19, 1207 (1990).Google Scholar
6. Cho, J., “Effect of Microstructure of Aluminum Alloys on the Electromigration Limited Reliability of VLSI Interconnects, Ph.D. Thesis (MIT Department of Materials Science and Engineering, Cambridge, MA, September 1990).Google Scholar
7. Thompson, C.V. and Kahn, H., “Effects of Microstructure on Interconnect and Via Reliability: Statistics,” to appear in J. of Electron. Mat. (1993).Google Scholar
8. Vaidya, S., Sheng, T.T., and Sinha, A.K., Appl. Phys. Letts. 36, 968 (1980)Google Scholar
9. Attardo, M.J. and Rosenberg, R., J. Appl. Phys. 41, 2381 (1970).Google Scholar
10. Cooperman, S.S., “Electromigration in Submicron-Wide Interconnects,” S.M. Thesis (MIT Department of Materials Science and Engineering, Cambridge, MA, February 1992).Google Scholar
11. Walton, D.T., Frost, H.J., and Thompson, C.V., Appl. Phys. Letts. 61, 40 (1992).Google Scholar
12. Walton, D.T., Frost, H.J., and Thompson, C.V., Mater. Res. Soc. Proc. 225, 219 (1991).Google Scholar
13. Venables, J.A. and Price, G.L., in Epitaxial Growth: Part B, edited by Mathews, J.W. (Academic Press, NY, 1975).Google Scholar
14. Frost, H.J. and Thompson, C.V., Acta Met. et Mat. 38, 1455 (1990).Google Scholar
15. Brown, A.M. and Ashby, M.F., Acta Metall. 28, 1085 (1980).Google Scholar
16. Turnbull, D., Trans. Am. Inst. Min. (Metall.) Eng. 191, 661 (1951).Google Scholar
17. Wong, C.C., Smith, H.I., and Thompson, C.V., Appl. Phys. Letts. 48, 335 (1986).CrossRefGoogle Scholar
18. See, for example, Grain Growth in Polycrystalline Materials, Parts 1 and 2, edited by Abbruzzese, G. and Brozzo, P. (Trans Tech Publications, 1992).Google Scholar
19. Thompson, C.V., Annu. Rev. Mat. Sci. 20, 245 (1990).Google Scholar
20. Thornton, J.A., Annu. Rev. Mater. Sci. 7, 239 (1977).Google Scholar
21. Grovenor, C.R.M., Hertzell, H.T.G., and Smith, D.A., Acta Metall. 32, 773 (1984).Google Scholar
22. Abbruzzese, G. and Lucke, K., Acta Metall. 34, 905 (1986).Google Scholar
23. Rolleft, A.D., Srolovitz, D.J., and Anderson, M.P., Acta Metall. 4, 1227 (1989).Google Scholar
24. Sanchez, J.E. and Arzt, E., Scripta Metall. Mater. 27, 285 (1992).Google Scholar
25. Longworth, H. and Thompson, C.V., J. of Appl. Phys. 69, 3929 (1991).Google Scholar
26. Thompson, C.V., Scripta Met. et Mat. 28, 167 (1993).CrossRefGoogle Scholar
27. Thompson, C.V., Floro, J., and Smith, H.I., J. Appl. Phys. 67 (9) (1990).Google Scholar
28. Hillert, M., Acta Metall. 13, 227 (1965).Google Scholar
29. Louat, N.P., Acta Metall. 22, 721 (1974).Google Scholar
30. Hunderi, O. and Ryum, N., J. Mater. Sci. 145, 1104 (1980).Google Scholar
31. Pande, C.S. and Dantsker, E., Acta Met. et Mat. 38, 945 (1990); 39, 1359 (1991).Google Scholar
32. Thompson, C.V., Acta Met. 36, 2929 (1988).Google Scholar
33. Thompson, C.V., J. Appl. Phys. 48, 339 (1986).Google Scholar
34. Knorr, D.B. and Rodbell, K.P., Materials Reliability in Microelectronics II, edited by Thompson, C.V. and Lloyd, J.R. (Mater. Res. Soc. Proc. 265, Pitssburgh, PA, 1992), p. 113.Google Scholar
35. Smithels Metals Reference Book, 6th edition, edited by Brandes, E.A. (Butterworths: Boston, MA, 1983), p. 15–5.Google Scholar
36. Chaudhari, P., IBM J. Res. Dev. 13, 197 (1969); P. Chaudhari, S. Mader, and J.F. Freedman, J. Vac. Sci. and Tech. 6, 618 (1969).Google Scholar
37. Thompson, C.V., J. Mat. Res. 8 (1993).Google Scholar
38. Smith, C.S., Trans. Metall. Soc. AIME 175, 18 (1949).Google Scholar
39. Doherty, R.D., Srolovitz, D.J., Rollett, R.D., and Anderson, M.P., Scripta Metall. 21, 675 (1987).Google Scholar
40. Hillert, M., Acta Metall. 36, 3177 (1988).Google Scholar
41. Gangulee, A. and D'Heurle, F.M., Thin Solid Films 12, 399 (1972).Google Scholar
42. Frost, H.J., Thompson, C.V., Howe, C.L., and Whang, J., Scripta Metall. 22, 65 (1988).Google Scholar
43. Frost, H.J. and Thompson, C.V., J. Electron. Mat. 17, 447 (1988).Google Scholar
44. Frost, H.J., Thompson, C.V., and Walton, D.T., Acta Metall. 40, 779 (1992).Google Scholar
45. Blech, I.A., J. Appl. Phys. 47, 1203 (1976).Google Scholar
46. Mullins, W.W., Acta Metall. 35, 887 (1987).Google Scholar
47. Palmer, J.E., Thompson, C.V., and Smith, H.I., J. Appl. Phys. 62, 2492 (1987).Google Scholar
48. Wu, K., Baerg, W., and Jupiter, P., Appl. Phys. Letts. 58, 1299 (1991).Google Scholar
49. D'Heurle, F.M. and Rosenberg, R., in Physics of Thin Films 7, edited by Hass, G. and Hoffman, R. (Academic Press: NY, 1973), p. 257.Google Scholar
50. Mondolfo, L.F., Aluminum Alloys: Structure and Properties (Butterworths: London, 1976). p. 254.Google Scholar
51. Smithells Metals Reference Book, 6th edition, edited by Brandes, E.A. (Butterworths: Boston, MA, 1983), p. 1314.Google Scholar
52. Knowlton, B.D. and Thompson, C.V., MIT, unpublished research.Google Scholar