Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T17:19:47.586Z Has data issue: false hasContentIssue false

The Effect of Silanisation on Microstructural Stability and Magnetic Properties of the Intermetallic Sm2(Co, Fe, Cu, Zr)17·

Published online by Cambridge University Press:  20 January 2011

M. I. Qadeer
Affiliation:
Department of Materials Science and Engineering, The Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
Bruska Azdhar
Affiliation:
Department of Fibre and Polymer Technology, The Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
S. J. Savage
Affiliation:
Department of Materials Science and Engineering, The Royal Institute of Technology, SE-100 44, Stockholm, Sweden. Division of Information Systems, Swedish Defence Research Agency (FOI), SE-581 11 Linköping, Sweden.
Get access

Abstract

The effects of silanising using the coupling agent γ-glycidoxpropyltrimethoxysilane on microstructural stability and magnetic properties of Sm-Co powder particles have been investigated. The silanisation provides structural stability by improving the oxidation resistance at 400oC for 10 hours. The untreated particles undergo microchemical changes by redistribution of alloying elements which mainly accumulate in parallel black and grey streaks in the interior of the particles. The silanised particles after heat treatment show coercivity of 836 Oe and the untreated particles show a much lower coercivity of 376 Oe. The difference in magnetic properties of uncoated particles is caused by diffusion of oxygen and microstructural instability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gutfleisch, O., Müller, K.-H., Khlopkov, K., Wolf, M., Yan, A., Schäfer, R., Gemming, T., Schultz, L., Acta Mater. 54, 997 (2006).Google Scholar
2. Gopalan, R., Muraleedharan, K., Sastry, T. S. R. K., Singh, A. K., Joshi, V., Sidhara Rao, D. V., Chandrasekaran, V., J. Mater. Sci. 36, 4117 (2001).Google Scholar
3. Kim, A. S., J.Appl. Phy. 83, 6715 (1998).Google Scholar
4. De Pauw, V., Lemarchand, D., Saiter, J. M., Devallencourt, C., J.Alloys Compd., 266, 293 (1998).Google Scholar
5. Kardelky, S., Gebert, A., Gutfleisch, O., Hoffmann, V. and Schultz, L., J. Magn. Magn. Mater. 290291, 1226 (2005).Google Scholar
6. Pragnell, W. M., Williams, A. J., Evans, H. E., J. Appl. Phys. 103, 07E127 (2008)Google Scholar
7. Handstein, A., Yan, A., Martinek, G., Gutfleisch, O., Müller, K.-H., Schultz, L., IEEE Trans Magn, 39, 2923 (2003).Google Scholar
8. Otaigbe, J. U., Xiao, J., Kim, H., J. Mat. Sci. Lett., 18, 329 (1999).Google Scholar
9. Wu, K. H., Chao, C. M., Yeh, T. F. and Chang, T. C., Surf.Coat. Technol., 201, 5782 (2007).Google Scholar