Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:28:27.902Z Has data issue: false hasContentIssue false

Effect of Heat Treatment on the Microstructures and Electrical Properties of Insb Thin Films

Published online by Cambridge University Press:  25 February 2011

P. W. Wang
Affiliation:
Materials Research Laboratories, ITRI, Chutung, Hsinchu, Taiwan, R.O.C.
S. Yeh
Affiliation:
Materials Research Laboratories, ITRI, Chutung, Hsinchu, Taiwan, R.O.C.
L. Chang
Affiliation:
Materials Research Laboratories, ITRI, Chutung, Hsinchu, Taiwan, R.O.C.
Get access

Abstract

Polycrystalline InSb thin films have been prepared by two-source thermal evaporation method. The as-deposited randomly oriented thin films develop (111) preferred orientation upon heat treatment of different maximum setting temperatures, T(max)s. Under different T(max)s, the elongate (111) grains rotate gradually the direction of the elongation respect to the thermally oxidized Si(100) substrate.

The (111) preferred orientation has been seen from both cross-sectional TEM and X-ray diffraction patterns. The electrical mobility value of the thin film has been measured by the Van der Pauw′s method. A dramatic increase in the electrical mobility from few thousands, for the as-deposited film, to intermediate values of 15,000-30,000 cm2/v-s and the highest value of 36,000 cm2/v-s for thin films subjected to different T(max)s, can be correlated well to the corresponding microstruetures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Williamson, W. J., Solid-State Electronics, 9 (1966)213.Google Scholar
2. Carrol, J. A. and Spivak, J. F., ibid, 9 (1966) 383.Google Scholar
3. Nadkarni, G.S., Simoni, A. and Simons, J. G., ibid, 18 (1975) 393Google Scholar
4. Ohshita, M., Jpn. J. Appl. Phys. 10, No. 10 (1971) 1365.Google Scholar
5. Nadkarni, G. S., Thin Solid Films, 87 (1982) 17.Google Scholar
6. Isai, M. and Ohshita, M., J. Appl. Phys. 55, No. 4 (1984) 15.Google Scholar
7. Yeh, S., Cheng, D. J., Chi, G. F. and Chu, M. T., Mat. Res. Soc. Symp. Proc. Vol.135, P.483488, 1989.Google Scholar
8. Teede, N. F., Solid State Electronics, 10 (1967) 1069.Google Scholar
9. Clawson, A. R., J. Vac. Science ScTech. 6 No. 4 (1969) 769;Google Scholar
Thin Solid Films, 12 (1972) 291.Google Scholar
10. , T., Kotera, N. and Shigeta, J., Jpn. J. Appl. Phys. 17, No.2 (1978) 407.Google Scholar
11. Oszwaldowski, M., Szweycer, H., , T., Goc, J. and Zimpel, M., Thin Solid Films, 85 (1981) 319.Google Scholar
12. Wang, C. C., Keavney, C. J., Atwater, H. A., Thomson, C. V. and Smith, H. I., Mat. Res. Soc. Symp. Proc. 23 (1984) 627.Google Scholar
13. Isai, M. and Ohshita, M., J. Appl. Phys. 58, No.7 (1985) 2686.Google Scholar
14. Wieder, H. H., Thin Solid Films, 31 (1976) p.123138.Google Scholar
15. Keavney, C. J., Zone Melting of InSb on Oxidized Silicon substrates, Massachusetts Institute of Technology, 1983.Google Scholar
16. Hansen, , Elliott, , and Shunk, , Metals Handbook, 8th, vol.8, 132.Google Scholar