Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-17T23:16:21.970Z Has data issue: false hasContentIssue false

Doping profiles of n-type GaAs layers grown on Si by the conformal method

Published online by Cambridge University Press:  21 March 2011

Angel M. Ardila
Affiliation:
Depto. De Física, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Santa Fe de Bogotá, Colombia Física de la Materia Condensada, Facultad de Ciencias, Universidad de Valladolid, Valladolid, 47011, Spain
O. Martínez
Affiliation:
Física de la Materia Condensada, Facultad de Ciencias, Universidad de Valladolid, Valladolid, 47011, Spain
M. Avella
Affiliation:
Física de la Materia Condensada, Facultad de Ciencias, Universidad de Valladolid, Valladolid, 47011, Spain
J. Jiménez
Affiliation:
Física de la Materia Condensada, Facultad de Ciencias, Universidad de Valladolid, Valladolid, 47011, Spain
B. Gérard
Affiliation:
Thales, Corporate Research Laboratory, 91404 Orsay Cedex, France
J. Napierala
Affiliation:
Lasmea UMR CNRS 6602, Université Blaise Pascal, Les Cézeaux, 63177 Aubiére Cedex, France
E. Gil-Lafon
Affiliation:
Lasmea UMR CNRS 6602, Université Blaise Pascal, Les Cézeaux, 63177 Aubiére Cedex, France
Get access

Abstract

We study doping profiles in selectively Si-doped GaAs layers grown by the conformal method. This growth technique allows to obtain GaAs/Si with optoelectronic quality. The samples are laterally grown, and selective doping with Si is carried out in such a way that doped stripes are intercalated with undoped ones. The study of the doping profiles was carried out by cathodoluminescence (CL) and micro-Raman (μR) spectroscopy. Abrupt doping profiles between doped and undoped stripes were demonstrated by monochromatic CL images. Deep level related CL bands can be observed between 1000 and 1400 nm, evidencing the complex mechanism for Si incorporation at the growth temperature (730 °C). Net doping concentrations and mobilities across the layers were determined from the analysis of the phonon-plasmon coupled modes in the μR spectra obtained with a lateral resolution better than 1 μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, W. I., Appl. Phys. Lett. 44, 1149 (1984).Google Scholar
2. Yodo, T. and Tamura, M., Jpn. J. Appl. Phys. 34, 3457 (1995).Google Scholar
3. V.Kuz'menko, R., Ganzha, A. V., Bochurova, O.V., Domashevskaya, E. P., Schreiber, J., Hildebrandt, S., Mo, S., Peiner, E. and Schlachetzki, A., Semiconductors, 34, 73 (2000).Google Scholar
4. Zytkiewicz, Z. R., Cryst. Res. Technol. 34, 573 (1999).Google Scholar
5. Pribat, D., Provendier, V., Dupuy, M., Legagneux, P. and Collet, C., Jpn. J. Appl. Phys. 30, L431 (1991).Google Scholar
6. Parillaud, O., Piffault, N., Gil-Lafon, E. and Cadoret, R., Proc. Sixth Intern. Conf. On Indium Phosphide and Related Materials, Santa Barbara USA, IEEE, 547 (1994).Google Scholar
7. Herms, M., Irmer, G., Monecke, J. and Oettel, O., J. Appl. Phys. 71, 432 (1992).Google Scholar
8. Abstreiter, G., Cardona, M. and Pinczuk, A., Light Scattering in Solids IV, Topics in Applied Physics, Vol 54 (Springer, Berlin, 1984), p. 5.Google Scholar
9. Harrison, I., Pavesi, L., Henini, M. and Johnston, D., J. Appl. Phys. 75, 3151 (1994).Google Scholar
10. Ky, N.H., Ganiere, J.D., Reinhart, F. K., Blanchard, B. and Pfister, J.C., J. Appl. Phys. 74, 5493 (1993).Google Scholar