Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:54:29.107Z Has data issue: false hasContentIssue false

Direct-Write Deposition and Laser Processing of Dry Fine powders

Published online by Cambridge University Press:  01 February 2011

Pranav Kumar
Affiliation:
Mechanical Engineering Department, University of Michigan Ann Arbor, MI 48109–2125, U.S.A.
Suman Das
Affiliation:
Mechanical Engineering Department, University of Michigan Ann Arbor, MI 48109–2125, U.S.A.
Get access

Abstract

We present a concept for multi-material solid freeform fabrication of 2D and layered 3D heterogeneous components. This technique involves direct-write deposition of multiple, patterned powder materials followed by laser processing. The direct-write deposition system features miniature hopper-nozzles for depositing dry powdered materials by gravity or by high frequency vibration-assisted flow onto a movable substrate. A dual wavelength laser processing workstation was used to consolidate the deposited pattern to desired densities. The feasibility of this concept was proved by direct-writing and laser processing various powder material patterns.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chrisey, D. B., Pique, A., Fitz-Gerald, J., Auyeung, R. C. Y., McGill, R. A., Wu, H. D. and Duignan, M., App. Surf. Sci., 154–155, 593600 (2000).Google Scholar
2. Smay, J.E., Gratson, G.M., Shepherd, R.F., Cesarano III, J., Lewis, J.A., Adv. Mater., 14 (18), 12791283 (2002).Google Scholar
3. Zhao, X., Evans, J.R.G., Edirisinghe, M.J., Song, J.H., Ceram. Int., 29, 887892 (2003).Google Scholar
4. Seerden, K.A.M., Reis, N., Evans, J.R.G., Grant, P.S., Halloran, J.W., and Derby, B., J. Am. Ceram. Soc., 84 (11), 25142520 (2001).Google Scholar
5. Morissette, S.L., Lewis, J.A., Clem, P.G.., Cesarano, J., and Dimos, D.B., J.Am. Ceram. Soc., 84 (11), 24622468 (2001).Google Scholar
6. Hofmeister, W., Wert, M., Smugeresky, J., Philliber, J.A., Griffith, M., and Ensz, M., JOM, 51 (7), (1999).Google Scholar
7. Mazumder, J., Schifferer, A. and Choi, J., Mater. Res. Innovat., 3, 118131 (1999).Google Scholar
8. Fessler, J. et al, SFF Symp. Proc., University of Texas, Austin, 521528 (1997).Google Scholar
9. Sun, H.B., Kawakami, T., Xu, Y., Ye, Jia-Yu, Matsuo, S., Misawa, H., Miwa, M., and Kaneko, R., Optics Letters, 25(15), 11101112 (2000).Google Scholar
10. Jian, X.N., Sun, C., Zhang, X., Xu, B., and Ye, Y.H., Sensors and Actuators, 87, 7277, (2000).Google Scholar
11. Zhang, X., Jiang, X.N., and Sun, C., Sensors and Actuators, 77, 149156 (1999).Google Scholar
12. Zhang, X., and Sun, C., Journal of Applied Physics, 92(8), 47964802 (2002).Google Scholar
13. Kawata, S., Sun, H.B., Tanaka, T., and Takada, K., Nature, 412, 697698, (2001).Google Scholar
14. Kumar, P., Beck, E. and Das, S., Solid Freeform Fabrication Symp. Proc., 8292 (2003)Google Scholar
15. Kumar, P. and Das, S., submitted to Powder Tech., to be publishedGoogle Scholar
16. Kumar, P., Santosa, J.K., Beck, E. and Das, S., Rapid Prototyping Journal, 10 (1), 1423 (2004).Google Scholar