Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T18:48:56.424Z Has data issue: false hasContentIssue false

Directional Growth of Si Nanowires on Insulating Films by Electric-Field-Assisted Metal-Induced Lateral Crystallization

Published online by Cambridge University Press:  01 February 2011

Hiroshi Kanno
Affiliation:
[email protected], Kyushu University, Department of Electronics, 6-10-1 Hakozaki, Fukuoka, Fukuoka, 812-8581, Japan, +81-92-642-3951, +81-92-642-3974
Atsushi Kenjo
Affiliation:
[email protected], Kyushu University, Department of Electronics, Japan
Taizoh Sadoh
Affiliation:
[email protected], Kyushu University, Department of Electronics, Japan
Masanobu Miyao
Affiliation:
[email protected], Kyushu University, Department of Electronics, Japan
Get access

Abstract

Metal-induced lateral crystallization of amorphous Si has been investigated under a wide range of electric fields (0-4000 V/cm). In the low field region (<100 V/cm), lateral growth velocity at the cathode side was enhanced by applying an electric field. This achieved formation of poly-Si with a large area (∼50 μm) during low-temperature annealing (525°C, 25 h). When the electric field exceeded 100 V/cm, the lateral growth velocity decreased with increasing the electric field strength. Under the extremely high electric field (>2000 V/cm), directional growth aligned to the electric field was observed. This new findings will be a powerful tool to achieve new poly-Si with highly controlled structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamaguchi, S., Sugii, N., Park, S. K., Nakagawa, K., and Miyao, M., J. Appl. Phys. 89, 2091 (2001).Google Scholar
2. Olivares, J., Rodriguez, A., Sangrador, J., Rodriguez, T., Ballesteros, C., and Kling, A., Thin Solid Films 337, 51 (1999).Google Scholar
3. Miyao, M., Sadoh, T., Yamaguchi, S., and Park, S. K., Tech. Rep. IEICE 101, 1 (2001).Google Scholar
4. Kim, J. H. and Lee, J. Y., Jpn. J. Appl. Phys. 35, 2052 (1996).Google Scholar
5. Lee, S. W., Jeon, Y. C., and Joo, S. K., Appl. Phys. Lett. 66, 1671 (1995).Google Scholar
6. Bian, B., Yie, J., Li, B., and Wu, Z., J. Appl. Phys. 73, 7402 (1993).Google Scholar
7. Andrade, K., Jang, J., and Moon, B. Y., J. Korean Phys. Soc. 39, S376 (2001).Google Scholar
8. Hayzelden, C. and Batstone, J. L., J. Appl. Phys. 73, 8279 (1993).Google Scholar
9. Kanno, H., Tsunoda, I., Kenjo, A., Sadoh, T., and Miyao, M., Appl. Phys. Lett. 82, 2148 (2003).Google Scholar
10. Kanno, H., Kenjo, A., Sadoh, T., and Miyao, M., Appl. Phys. Lett. 85, 899 (2004).Google Scholar
11. Kanno, H., Aoki, T., Kenjo, A., Sadoh, T., and Miyao, M., Jpn. J. Appl. Phys. 44, 2405 (2005).Google Scholar
12. Park, S.-H., Jun, S.-I., Song, K.-S., Kim, C.-K., and Choi, D.-K., Jpn. J. Appl. Phys. 38, L108 (1999).Google Scholar
13. Li, J. F., Zeng, X. B., Sun, X. W., and Qi, G. J., Thin Solid Films 458, 149 (2004).Google Scholar
14. Jang, J., Oh, J. Y., Kim, S. K., Choi, Y. J., Yoon, S. Y., and Kim, C. O., Nature 395, 481 (1998).Google Scholar
15. Yoon, S. Y., Park, S. J., Kim, K. H., and Jang, J., Thin Solid Films 385, 34 (2001).Google Scholar
16. Miyasaka, M., Makihira, K., Asano, T., Polychroniadis, E., and Stoemenos, J., Appl. Phys. Lett. 80, 944 (2002).Google Scholar