Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T04:34:31.293Z Has data issue: false hasContentIssue false

Dialkylenecarbonate-Bridged Polysilsesquioxanes: Hybrid Organic-Inorganic Sol-Gels with a Thermally Labile Bridging Group

Published online by Cambridge University Press:  10 February 2011

Douglas A. Loy
Affiliation:
Catalysts Department, Sandia National Laboratories, Albuquerque, NM 87185–1407, [email protected]
James V. Beach
Affiliation:
Catalysts Department, Sandia National Laboratories, Albuquerque, NM 87185–1407, [email protected]
Brigitta M. Baugher
Affiliation:
Catalysts Department, Sandia National Laboratories, Albuquerque, NM 87185–1407, [email protected]
Roger A. Assink
Affiliation:
Catalysts Department, Sandia National Laboratories, Albuquerque, NM 87185–1407, [email protected]
Kenneth J. Shea
Affiliation:
Department of Chemistry, University of California, Irvine, CA 92717–2025
Joseph Tran
Affiliation:
Department of Chemistry, University of California, Irvine, CA 92717–2025
James H. Small
Affiliation:
Polymers and Coatings Group, MST-7, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

In this paper, we introduce a new approach for altering the properties of bridged polysilsesquioxane xerogels using post-processing modification of the polymeric network. The bridging organic group contains latent functionalities that can be liberated thermally, photochemically, or by chemical means after the gel has been processed to a xerogel. These modifications can produce changes in density, solubility, porosity, and or chemical properties of the material. Since every monomer possesses two latent functional groups, the technique allows for the introduction of high levels of functionality in hybrid organic-inorganic materials. Dialkylenecarbonate-bridged polysilsesquioxane gels were prepared by the sol-gel polymerization of bis(triethoxysilylpropyl)carbonate (1) and bis(triethoxysilylisobutyl)-carbonate (2). Thermal treatment of the resulting non-porous xerogels and aerogels at 300–350°C resulted in quantitative decarboxylation of the dialkylenecarbonate bridging groups to give new hydroxyalkyl and olefinic substituted polysilsesquioxane monolithic xerogels and aerogels that can not be directly prepared through direct sol-gel polymerization of organotrialkoxysilanes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Loy, D. A.; Shea, K. J. Chem. Rev. 1995, 95(5), 14311442. 10.1021/cr00037a013Google Scholar
2) Loy, D. A.; Jamison, G. M.; Baugher, B. M.; Russick, E. M.; Assink, R. A.; Prabakar, S.; Shea, K. J. J Non-Cryst. Solids 1995, 186, 4453. 10.1016/0022-3093(95)00032-1Google Scholar
3) Loy, D. A.; Jamison, G. M.; Baugher, B. M.; Myers, S. A.; Assink, R. A.; Shea, K. J. Chem. Mater. 1996, 8, 656663.10.1021/cm950067zGoogle Scholar
4) Loy, D. A.; Carpenter, J. P.; Myers, S. A.; Assink, R. A.; Small, J. H.; Greaves, J.; Shea, K. J. J. Am. Chem. Soc. 1996, 118, 85018502.10.1021/ja961409kGoogle Scholar
5) Loy, D. A.; Carpenter, J. P.; Yamanaka, S. A.; McClain, M. D.; Greaves, J.; Hobson, S.; Shea, K. J.Chem. Mater. 1998, 10, 41294140.10.1021/cm9805424Google Scholar
6) Loy, D. A.; Baugher, B. M.; Schneider, D. A. Polym. Prepr. 1998, 39(2), 418419. Google Scholar
7) Panster, P.; Buder, W.; Kleinschmit, P. Ger. Patent. 3120214 A1 821209, 1982.Google Scholar
8) Levantovskaya, I. I.; Blyumenfel'd, A. B.; Gur'yanova, V. V.; Narinyan, Ts. A.; Arshava, B. M.; Aralyuk, G. V. Plast. Massy 1989, 10, 23–6.Google Scholar
9) Houlihan, F. M.; Bouchard, F.; Frechet, J. M. J.; Willson, C. G. Macromolecules 1986, 19(1), 1319.10.1021/ma00155a003Google Scholar
10) Fahrenholtz, W. G.; Smith, D. M.; Hua, D. W. J. Non-Cryst. Solids 1992, 144(1), 4552. 10.1016/S0022-3093(05)80381-3Google Scholar