Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:43:33.294Z Has data issue: false hasContentIssue false

Determination of the Upper Limit for the Cluster Moment Contributing the Giant Magneto Resistance in Laser Deposited Granular Cu-rich Thin Films

Published online by Cambridge University Press:  10 February 2011

V. Madurga
Affiliation:
Departamento de Física, Universidad Pública de Navarra, E-31006 Pamplona, Spain.
R. J. Ortega
Affiliation:
Departamento de Física, Universidad Pública de Navarra, E-31006 Pamplona, Spain. Department of Condensed Matter Physics, Royal Institute of Technology, S-10044 Stockholm, Sweden.
J. Vergara
Affiliation:
Departamento de Física, Universidad Pública de Navarra, E-31006 Pamplona, Spain. Department of Condensed Matter Physics, Royal Institute of Technology, S-10044 Stockholm, Sweden.
K. V. Rao
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, S-10044 Stockholm, Sweden.
Get access

Abstract

We have fabricated granular Cu95Co5 thin films by laser ablation-deposition. Within a regime of annealing temperatures, these samples exhibit Giant Magneto Resistance (GMR), typically 5% in 0.5 Tesla at 5 K. The magnetic hysteresis loops are found to show finite coercive fields in the whole temperature range 2 K - 300 K. Below 9 K, the field dependence of the MR shows a split maximum. We interpret the data in terms of coercivity arising from blocking phenomenon of single domain superparamagnetic Co clusters. A quantitative determination of the upper limit for the cluster moment contributing to GMR is estimated to be 17000 μB (a cluster size of 5 nm).

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Berkowitz, A.E., Mitchell, J.R., Carey, M.J., Young, A.P., Zhang, S., Spada, F.E., Parker, F.T., Hutten, A. and Thomas, G., Phys. Rev. Lett. 68 (1992) 3745 Google Scholar
2. Xiao, J.Q., Chien, J.S. and Chien, C.L., Phys. Rev. Lett. 68 (1992) 3749 Google Scholar
3. Wecker, J., von Helmolt, R., Schultz, L. and Samwer, K., Appl. Phys. Lett. 62 (1993) 1985 Google Scholar
4. Dieny, B., Chamberod, A., Genin, J.B., Rodmacq, B., Teixeira, S.R., Auffret, S., Gerard, P., Redon, O., Pierre, J., Ferrer, R. and Barbara, B.. J. Magn. Magn. Mater. 126 (1993) 433Google Scholar
5. Madurga, V., Ortega, R.J., Korenivski, V. and Rao, K.V.. March Meeting of the American Physical Society. Pittsburgh 1994.Google Scholar
6. Wan, H., Tsoukatos, T., Hadjipanayis, G.C., Li, Z.G., J. Liu. Phys. Rev. B49 (1994) 1524 Google Scholar
7. Dieny, B., Teixeira, S.R., Rodmacq, B., Cowache, C., Auffret, S., Redon, O., J. Pierre. J. Magn. Magn. Mater. 130 (1994) 197Google Scholar
8. Madurga, V., Ortega, R.J., Korenivski, V., Medelius, H. and Rao, K.V.. J. Magn. Magn. Mater. 140144 (1995)Google Scholar
9. Bean, C.P. and Livingston, J.K., J. Appl. Phys. 30 Suppl (1959) 120S Google Scholar
10. Cullity, B.D.. Introduction to Magnetism and Magnetic Materials (Adison-Wesley, 1972), p. 338.Google Scholar