Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:51:08.775Z Has data issue: false hasContentIssue false

Critical behavior of Epitaxial Antiferromagnetic Insulator Films: Interdigital Capacitance Measurement of Magnetic Specific Heat

Published online by Cambridge University Press:  03 September 2012

M. Lui
Affiliation:
Department of Physics, University of California, Santa Barbara, CA 93106
A. R. King
Affiliation:
Department of Physics, University of California, Santa Barbara, CA 93106
V. Jaccarino
Affiliation:
Department of Physics, University of California, Santa Barbara, CA 93106
G. L. Snider
Affiliation:
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106
Get access

Abstract

An interdigital capacitance technique (ICT) for the measurement of magnetic specific heat (Cm) critical behavior of micron-thick epitaxial films of antiferromagnetic insulators (AF) has been developed. It was first applied to a study of high quality 3μm epitaxial films of FeF2 on lattice matching (001) oriented ZnF2 substrates. Under ideal preparatory conditions, the (Cm) results exhibit the divergent critical behavior of a 3-D Ising system. The ICT appears to be a useful method for characterizing the quality of AF films in regard to rms variations in the exchange interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lui, M., Drucker, J., King, A. R., Kotthaus, J. P., Hansma, P. K., and Jaccarino, V., Phys. Rev. B33, 7720 (1986).Google Scholar
2. King, A. R., Belanger, D. P., Nordblad, P. and Jaccarino, V., J. Appl. Phys. 55 (6), 2410 (1984).CrossRefGoogle Scholar
3. Rezende, S. M., King, A. R., and Jaccarino, V., J. Appl. Phys. 55(6) 2413 (1984).Google Scholar
4. King, A. R., Jaccarino, V., Belanger, D. P. and Rezende, S. M., Phys. Rev. B32, 503 (1985).CrossRefGoogle Scholar
5. King, A. R. and Belanger, D. P., J. Magn. Magn. Mater. 54–57, 19 (1986).Google Scholar
6. Lui, M., King, A. R., Jaccarino, V., Farrow, R. F. C. and Parkins, S. S. P. (to be published).Google Scholar
7. Macrander, A. T. and Strege, K. E., J. Appl. Phys. 59 (2), 442 (1986).Google Scholar
8. Thompson, A. M., IRE Trans. Instrum. 1–7, 245 (1958).Google Scholar
9. Belanger, D. P., Nordblad, P., King, A. R., Jaccarino, V., Lundgen, L. and Beckman, O., J. Magn. Magn. Mater. 31–34, 1095 (1983).CrossRefGoogle Scholar
10. LeGuillou, J. C. and Zinn-Justin, J., Phys. Rev. B21, 3976 (1980).Google Scholar
11. Barmatz, M., Hohenberg, P. C. and Kornblit, A., Phys. Rev. B12 1947 (1975).Google Scholar
12. Lui, M., King, A.R., Jaccarino, V., and Snider, G.L. (submitted to Phys. Rev. B).Google Scholar