Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T23:39:39.961Z Has data issue: false hasContentIssue false

Corrosion mechanisms of low level vitrified radioactive waste in a loamy soil

Published online by Cambridge University Press:  17 March 2011

M.I. Ojovan
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, UK
W.E. Lee
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, UK
A.S. Barinov
Affiliation:
Scientific and Industrial Association “Radon”, Moscow, Russia
N.V. Ojovan
Affiliation:
Scientific and Industrial Association “Radon”, Moscow, Russia
I.V. Startceva
Affiliation:
Scientific and Industrial Association “Radon”, Moscow, Russia
D.H. Bacon
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington, US
B.P. Mcgrail
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington, US
J.D. Vienna
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington, US
Get access

Abstract

Field experiments have run for over 14 years to evaluate the behaviour of the same high-sodium content radioactive waste borosilicate glass buried in a loamy soil (glass K-26) and in an open testing area (glass Bs-10). Processing of field data for glass Bs-10 tested in an open area has resulted in a dissolution rate r = 0.42 µm/y and caesium diffusion coefficient D ≍ 1.8 10−20 m2/s at testing temperatures up to 19 oC. Both ion-exchange and hydrolysis control the corrosion of this glass. Processing of field data for K-26 glass revealed an insignificant role of glass dissolution. The caesium diffusion coefficient was estimated as D ≍ (3.4-5.1) 10−21 m2/s. Due to the relatively low storage temperatures (4.5 oC) used the leaching behaviour of glass K-26 is believed to be controlled by ion exchange processes. This mechanism is likely to remain dominant until the decay of 137Cs in the glass is below exemption levels.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iseghem, P. Van ed. J. Nucl. Mat., 298, N. 1, 2 (2001).Google Scholar
2. Sobolev, I.A., Lifanov, F.A., Stefanovsky, S.V., Dmitriev, S.A., Musatov, N.D., Kobelev, A.P. and Zakharenko, V.N.. Atomic Energy, 69, 233236 (1990).Google Scholar
3. Bacon, D.H.., Ojovan, M.I., McGrail, B.P., Ojovan, N.V., Startceva, I.V.. Proc. Int. Conf. ICEM ‘03, 21–25.09.03, Oxford, England, CD ROM 4509.pdf. (2003).Google Scholar
4. Ojovan, M.I., Ojovan, N.V., Startceva, I.V., Tchuikova, G.N., Golubeva, Z.I.., Barinov, A.S. J. Nucl. Mat. 298, 174179 (2001).Google Scholar
5. Aertensen, M., Lemmens, K., Iseghem, P. Van. Mat. Res. Soc. Symp. Proc., 757, II5.8.18 (2003).Google Scholar
6. McGrail, B.P., Isenhower, J.P., Shuh, D.K., Liu, P., Darab, J.G., Baer, D.R., Thevuthasen, S., Shutthanandan, V., Engelhard, M.H., Booth, C.H., Nachimuthu, P.. J. Non-Cryst. Solids, 296, 1026 (2001).Google Scholar
7. Doremus, R.H.. J. Non-Cryst. Solids, 19, 137 (1975).Google Scholar
8. Doremus, R.H.. J. Non-Cryst. Solids, 25, 261 (1977).Google Scholar
9. Grambow, B.E.. Mat. Res. Soc. Symp. Proc., 44, 15 (1985).Google Scholar
10. Douglas, R.W., Isard, J.O.. J. Soc. Glass Techn. 33, 289335 (1949).Google Scholar
11. Strachan, D.M.. J. Nucl. Mat., 298, 6977 (2001).Google Scholar
12. Ojovan, M.I., Ojovan, N.V., Startceva, I.V., Chuikova, G.N. and Barinov, A.S.. Mat. Res. Soc. Symp. Proc., 663, 837842 (2001).Google Scholar
13. Portal, S., Sempere, R.. Phys. Chem. Glasses, 44, 303307 (2003).Google Scholar
14. Ojovan, M.I., Burcl, R.. Proc. 2003 EPRI Int. Conf. in Conj. with IAEA, 16-18.07.03, New Orleans, LA, USA, CD ROM EPRI-S08-P7.pdf (2003).Google Scholar
15. Ojovan, M.I., Lee, W.E.. Mat. Res. Soc. Symp. Proc., 792, R2.5.16 (2004).Google Scholar