Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:54:06.344Z Has data issue: false hasContentIssue false

Correlations Between the Structure, Energy and Diffusivity of Grain and Interphase Boundaries

Published online by Cambridge University Press:  25 February 2011

T. Muschik
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 75, D-7000 Stuttgart, Germany
W. Gust
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 75, D-7000 Stuttgart, Germany
B. Predel
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 75, D-7000 Stuttgart, Germany
U. Wolf
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 75, D-7000 Stuttgart, Germany
P. Gumbsch
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 75, D-7000 Stuttgart, Germany
J. Sommer
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 75, D-7000 Stuttgart, Germany
C. Herzig
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 75, D-7000 Stuttgart, Germany
Get access

Abstract

The paper illustrates the benefits of a combined use of computer simulations of interfacial properties and experiments performed on macroscopic, well-defined bicrystals. The results from two studies are reported. Relative energies of inclined Cu Σ3 grain boundaries were determined by thermal grooving experiments on diffusion-bonded Cu bicrystals. A comparison with calculated energies for crystallographically identical interfaces points to the possibility of macrofaceting of inclined grain boundaries upon annealing. Grain boundary entropy effects are discussed as another possible reason for small differences between theory and experiment. The diffusion rate of Ag* radiotracer in heterophase boundaries of diffusion-bonded Ag-Cu bicrystals can qualitatively be correlated with computed structural details of crystallographically identical Ag-Cu and Ag-Ni phase boundaries. The (computed) site-to-site variation of vacancy formation enthalpy on the (110) phase boundary leads to an anisotropy of Ag* phase boundary diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wolf, U., Gumbsch, P., Ichinose, H. and Fischmeister, H.F., J. Physique C1 51, 359 (1990).Google Scholar
2. Wolf, U., Foiles, S.M. and Fischmeister, H.F., Acta metall. mater 39, 373 (1991).Google Scholar
3. Gumbsch, P., Daw, M.S., Foiles, S.M. and Fischmeister, H.F., Phys. Rev. B, 43 (7), 13833 (1991).CrossRefGoogle Scholar
4. Schmelzte, R., Muschik, T., Gust, W. and Predel, B., Scripta metall. mater. 25, 1981 (1991).Google Scholar
5. Mullins, W.W., J. Appl. Phys. 28, 333 (1957).CrossRefGoogle Scholar
6. Herring, C., in The Pnysics of Powder Metallurgy, edited by Kingston, W.E. (McGraw Hill, New York, 1951), p. 143.Google Scholar
7. Wolf, U., Ernst, F., Muschik, T., Finnis, M.W. and Fischmeister, H.F., in preparation (1991).Google Scholar
8. Wolf, U., Ernst, F., Muschik, T., Finnis, M.W. and Fischmeister, H.F., this volume.Google Scholar
9. Murr, L.E., Interfacial Phenomena in Metals and Alloys, (Addison-Wesley, London, 1975), p. 124131.Google Scholar
10. Neuhaus, P. and Herzig, C., Acta metall. 35, 881 (1987).CrossRefGoogle Scholar
11. Suzuoka, T., J. Phys. Soc. Jap. 19, 839 (1964).Google Scholar
12. Turnbull, D. and Hoffman, R. E., Acta metall. 2, 419 (1954).Google Scholar
13. Gas, P. and Bernardini, J., Surf. Sci. 72, 365 (1978).Google Scholar
14. Barreau, G., Brunei, G., Ciceron, G. and Lacombe, P., C.R. Acad. Sci. C270, 516 (1970).Google Scholar
15. Barreau, G., Brunei, G., Ciceron, G. and Lacombe, P., Mem. Sci. Rev. Metall. 68, 357 (1971).Google Scholar
16. Bollmann, W., Crystal Lattices, Interfaces, Matrices, (Bollmann, Geneva, 1982).Google Scholar