Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:57:31.778Z Has data issue: false hasContentIssue false

Correlation Between Development of Leakage Current and Hydrogen Ionization in Ultrathin Silicon Dioxide Layers

Published online by Cambridge University Press:  10 February 2011

V. V. Afanas'ev
Affiliation:
Department of Physics, University of Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium
A. Stesmans
Affiliation:
Department of Physics, University of Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium, E-mail: Valeri.Afanasiev@fys kuleuven.ac.be
Get access

Abstract

The generation of leakage current across 3-6-nm thick thermal oxides on (100)Si under electrical stress or irradiation with 10-eV photons is compared with the radiation-induced defect generation in 35-66-nm thick SiO2 layers. The degradation of both ultrathin and conventional oxides appears correlated with the concentration of atomic hydrogen in the layer. Both the leakage currents and the irradiation-induced defects were found to have two components: one thermally unstable that correlates with the H-induced donor states, and another related to the permanent oxide network damage ascribed to H-assisted Si-O bond break. As both degradation processes involve a proton formed in the oxide, we suggest that H ionization either by electron emission or by trapping a hole triggers oxide degradation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.DiMaria, D. J. and Stasiak, J. W., J. Appl. Phys. 65, 2342 (1989).Google Scholar
2.Dumin, D. J. and Maddux, J. R., IEEE Trans. Electron Devices ED–40, 986 (1993).Google Scholar
3.DiMaria, D. J., Cartier, E., and Arnold, D., J. Appl. Phys. 73, 3367 (1993).Google Scholar
4.Satake, H. and Toriumi, A., Appl. Phys. Lett. 67, p. 3489 (1995).Google Scholar
5.Depas, M., Vermeire, B., Mertens, P. W., Meuris, M., and Heyns, M. M., Semicond. Sci. Technol. 10, 753 (1995).Google Scholar
6.DiMaria, D. J. and Cartier, E., J. Appl. Phys. 78, 3883 (1995).Google Scholar
7.Scarpa, A., Paccagnella, A., Montera, F., Gibaudo, G., Pananakakis, G., Ghidini, G., and Fuochi, P. G., IEEE Trans. Nucl. Sci. NS–44, 1818 (1997).Google Scholar
8.Houssa, M., Gendt, S. De, Bokx, P. de, Mertens, P. W., and Heyns, M. M., Microelectron. Eng. 48, 43 (1999).Google Scholar
9.Afanas'ev, V. V. and Stesmans, A., J. Electrochem. Soc. 146, 4309 (1999).Google Scholar
10.Afanas'ev, V. V., Nijs, J. M. M. de, Balk, P., and Stesmans, A., J. Appl. Phys. 78, 6481 (1995).Google Scholar
11.Sah, C. T., Sun, J. I. C., and Tzou, J., Appl. Phys. Lett. 42, 204 (1983).Google Scholar
12.Schmidt, M. and Köster, H. Jr, Phys. Stat. Solidi B 174, 53 (1992).Google Scholar
13.Sah, C. T., Chen, J. Y., and Tzou, J. J. T., J. Appl. Phys. 53, 8886 (1982).Google Scholar
14.Druijf, K. G., Nijs, J. M. M. de, Drift, E. van der, Granneman, E. H. A., and Balk, P., Appl. Phys. Lett, 65, 347 (1994).Google Scholar
15.Nijs, J. M. M. de, Druijf, K. G., Afanas'ev, V. V., Drift, E. van der, and Balk, P., Appl. Phys. Lett. 65, 2428 (1994).Google Scholar
16.Afanas'ev, V. V. and Stesmans, A., Appl. Phys. Lett. 70, 1260 (1997).Google Scholar
17.Nijs, J. M. M. de, Druijf, K. G., and Afanas'ev, V. V., in Fundamental aspects of ultrathin dielectrics on Si-based devices: Towards an atomic-scale understanding, edited by Garfunkel, E. et al. (NATO ASI Series 3, 47, 1998) pp. 425430.Google Scholar
18.Afanas'ev, V. V., Nijs, J. M. M. de, and Balk, P., Appl. Phys. Lett. 66, p. 1738 (1995).Google Scholar