Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-19T23:12:33.059Z Has data issue: false hasContentIssue false

Consequences of Crystal Structure Differences between C14, C15, and C36 Laves Phase Polytypes for their Coexistence in Transition-Metal-Based Systems

Published online by Cambridge University Press:  01 March 2011

F. Stein*
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Düsseldorf, Germany
Get access

Abstract

In various binary and ternary transition-metal-based systems, two or even three different polytypes of Laves phases coexist as equilibrium phases. A comparison of different phase diagrams reveals that the coexistence is characterized by some common features. In binary systems with cubic and hexagonal Laves phases existing at the same temperature but different compositions, the cubic C15 polytype always crystallizes at and around the stoichiometric composition whereas the hexagonal C14 and C36 polytypes are observed on the A-rich (C14) and B-rich (C36) side of the stoichiometry, respectively. On replacing the B atoms of an AB2 Laves phase by ternary additions, the highest solubility is always found in the C14 Laves phase. Ternary Laves phases A(B,C)2 in systems where none of the binary boundary systems contains a Laves phase are always of the C14 type. It is discussed how these observations are related to crystallographic differences between the three polytypic structures C14, C15, and C36.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stein, F., Palm, M., and Sauthoff, G., Intermetallics 13, 1056 (2005).Google Scholar
2. Kitano, Y., Takata, M., and Komura, Y., J. Microsc. 142, 181 (1986).Google Scholar
3. Stein, F., Jiang, D., Palm, M., Sauthoff, G., Grüner, D., and Kreiner, G., Intermetallics 16, 785 (2008).Google Scholar
4. Dovbenko, O., Stein, F., Palm, M., and Prymak, O., Intermetallics 18, 2191 (2010).Google Scholar
5. Grüner, D., Stein, F., Palm, M., Konrad, J., Ormeci, A., Schnelle, W., Grin, Y., and Kreiner, G., Z. Kristallogr. 221, 319 (2006).Google Scholar
6. Kreiner, G., Grüner, D., Grin, Y., Stein, F., Palm, M., and Ormeci, A., Mater. Res. Soc. Symp. Proc. 1128, 487 (2009).Google Scholar
7. Davydov, A.V., Kattner, U.R., Josell, D., Blendell, J.E., Waterstrat, R.M., Shapiro, A.J., and Boettinger, W.J., Metall. Mater. Trans. A 32, 2175 (2001).Google Scholar
8. Stein, F., Sauthoff, G., and Palm, M., J. Phase Equilib. 23, 480 (2002).Google Scholar
9. Okamoto, H., J. Phase Equilib. Diff. 25, 571 (2004).Google Scholar
10. Prymak, O. and Stein, F., in preparation (2010).Google Scholar
11. Stein, F., Sauthoff, G., and Palm, M., Z. Metallkd. 95, 469 (2004).Google Scholar
12. Palm, M. and Lacaze, J., Intermetallics 14, 1291 (2006).Google Scholar
13. Palm, M., Sanders, W., and Sauthoff, G., Z. Metallkd. 87, 390 (1996).Google Scholar
14. Yan, X.L., Chen, X.Q., Grytsiv, A., Witusiewicz, V.T., Rogl, P., Podloucky, R., and Giester, G., J. Alloys Compd. 429, 10 (2007).Google Scholar
15. Zhu, J.H., Liu, C.T., and Liaw, P.K., Intermetallics 7, 1011 (1999).Google Scholar
16. Kerkau, A., Grüner, D., Ormeci, A., Prots, Y., Borrmann, H., Schnelle, W., Bischoff, E., Grin, Y., and Kreiner, G., Z. Anorg. Allg. Chem. 635, 637 (2009).Google Scholar
17. Grüner, D., Doctoral thesis, TU Dresden, Germany (2007).Google Scholar
18. Prymak, O., Stein, F., Kerkau, A., Ormeci, A., Kreiner, G., Frommeyer, G., and Raabe, D., Mater. Res. Soc. Symp. Proc. 1128, 499 (2009).Google Scholar
19. Yan, X., Chen, X.Q., Grytsiv, A., Witusiewicz, V.T., Rogl, P., Podloucky, R., Pomjakushin, V., and Giester, G., Int. J. Mater. Res. 97, 450 (2006).Google Scholar
20. Yan, X.L., Chen, X.Q., Grytsiv, A., Rogl, P., Podloucky, R., Schmidt, H., Giester, G., and Ding, X.Y., Intermetallics 16, 16 (2008).Google Scholar
21. Gabay, A.M. and Gaviko, V.S., J. Magn. Magn. Mater. 260, 425 (2003).Google Scholar