Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T20:16:59.265Z Has data issue: false hasContentIssue false

Comparison of the GaAs Layers Grown on Porous Si and on Si by Molecular Beam Epitaxy

Published online by Cambridge University Press:  28 February 2011

B.J. Wu
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024
K.L. Wang
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024
Y.J. Mii
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024
Y.S. Yoon
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024
A.T. Wu
Affiliation:
Intel Corporation, Component Research, SC9-45, 2250 Mission College Blvd., Santa Clara, CA 95052
T. George
Affiliation:
Material Science & Mineral Engineering Department, University of California, Berkeley, CA 94720
E. Weber
Affiliation:
Material Science & Mineral Engineering Department, University of California, Berkeley, CA 94720
Get access

Abstract

GaAs layers have been successfully grown on tilted (100) Si as well as porous Si substrates by molecular beam epitaxy(MBE). Rapid thermal annealing and vacuum thermal annealing have been used to further improve the quality of the epitaxial layers. We observed that the dislocation density near the interface of the heterostructure is higher for GaAs on Si substrate. Both annealing processes are proven to be useful in improving layer quality, while the vacuum thermal annealing seemed to be more effective in minimizing the residual stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Akiyama, M., Kawarada, Y. and Kaminishi, K., Jpn. J. Appl. Phys. 23, L843(1984).Google Scholar
[2] Sakia, S., Soga, T., Takeyasu, M. and Umeno, M., Jpn. J. Appl. Phys. 24, L666(1985).CrossRefGoogle Scholar
[3] Kroemer, H., J. Cryst. Growth 81, 193 (1987).CrossRefGoogle Scholar
[4] Sakai, S., Soga, T., Takeyasu, M. and Umeno, M., Appl. Phys. Lett. 48, 413(1986).CrossRefGoogle Scholar
[5] Luryi, S. and Suhir, E., Appl. Phys. Lett. 49, 140 (1986).Google Scholar
[6] Mii, Y.J., Lin, T.L., Kao, Y.C., Wu, B.J., Wang, K.L., Nieh, C.W., Jamieson, D.N. and Liu, J.K., J. Vac. Sci. Technol. B6, 696(1988).CrossRefGoogle Scholar
[7] , Landolt-Bornstein's, Numerical Data and Functional Relationships in Science and Technology, ed. Madelung, O., Vol. 17a. Springer, N.Y. 1982.Google Scholar
[8] Thermophysical Properties of matter Vol. 13, Thermal Expansion -Nonmetallic Solids, ed. Touloukian, Y.S., Plrnum 1977.CrossRefGoogle Scholar
[9] Labunov, V., Bondarenko, V., Glinenko, L., Dorofeev, A. and Tabulina, L., Thin Solid Films 137, 123 (1986).CrossRefGoogle Scholar
[10] Lee, H.P., Liu, X., Lin, H., Smith, J.S., Wang, S., Huang, Y.H., Yu, P. and Huang, Y.Z., Appl. Phys. Lett. 53, 2394 (1988).Google Scholar
[11] Bugajski, M., Nauka, K., Rosner, S.J. and Mars, D., Mat. Res. Soc. Symp. proc. 116, 233 (1988).CrossRefGoogle Scholar