Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:01:11.290Z Has data issue: false hasContentIssue false

Comparison of H2 Desorption Kinetics from Si(111)7×7 and Si(100)2×l

Published online by Cambridge University Press:  25 February 2011

M. L. Wise
Affiliation:
Dept. of Chemistry, Stanford University Stanford, Calif. 94305
B. G. Koehler
Affiliation:
Dept. of Chemistry, Stanford University Stanford, Calif. 94305
P. Gupta
Affiliation:
Dept. of Chemistry, Stanford University Stanford, Calif. 94305
P. A. Coon
Affiliation:
Dept. of Chemistry, Stanford University Stanford, Calif. 94305
S. M. George
Affiliation:
Dept. of Chemistry, Stanford University Stanford, Calif. 94305
Get access

Abstract

The desorption kinetics of hydrogen from the β1 H2 -TPD state on Si(111)7×7 and Si(100)2×l were studied using laser-induced thermal desorption (LITD) and temperature programmed desorption (TPD) techniques. Isothermal LITD studies of H2 desorption from Si(111)7×7 revealed second-order kinetics with a desorption activation energy of Ed = 62 ±4 kcal/mol and a preexponential factor of Vd = 92 ±10 cm2 /s. In contrast, H2 desorption from Si(100)2×l revealed first-order kinetics with an activation energy of Ed = 58 ±2 kcal/mol and a preexponential factor of Vd = 5.5 ±0.5 × 1015 s−1. The desorption kinetics yield similar upper limits for the Si-H bond energies but different desorption mechanisms on Si(lll)7×7 and Si(100)2×l.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Koehler, B.G., Mak, C.H., Arthur, D.A., Coon, P.A. and George, S.M., J. Chem Phys. 89, 1709 (1988).Google Scholar
2. Sinniah, K., Sherman, M.G., Lewis, L.B., Weinberg, W.H., Yates, J.T. Jr., and Janda, K.C., J. Chem. Phys. 92, 5700 (1990).Google Scholar
3. Sinniah, K., Sherman, M.G., Lewis, L.B., Weinberg, W.H., Yates, J.T. Jr., and Janda, K.C., Phys. Rev. Letters 62, 567 (1989).Google Scholar
4. Gupta, P., Colvin, V.L. and George, S.M., Phys. Rev. 37, 8234 (1988)Google Scholar
5. Culbertson, R.J., Feldman, L.C., Silverman, P.J. and Haight, R., J. Vac. Sci. Technol. 20, 868 (1982).Google Scholar
6. Schulze, G. and Henzler, M., Surf. Sci. 124, 336 (1983).Google Scholar
7. Walsh, R., Acc. Chem. Res. 14, 246 (1981).Google Scholar
8. Sakurai, T. and Hagstrum, H., Phys. Rev. B14, 1593 (1976).Google Scholar